1. Shobana S, Krishnaswamy K, Sudha V, Malleshi NG, Anjana RM, Palaniappan L, et al. Finger millet (Ragi, Eleusine coracana L.): a review of its nutritional properties, processing, and plausible health benefits. Adv Food Nutr Res. 2013;69:1–39.
2. Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Front Plant Sci. 2015;6:157.
3. Hittalmani S, Mahesh HB, Shirke MD, Biradar H, Uday G, Aruna YR, et al. Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics. 2017;18:465.
4. Kumar A, Metwal M, Kaur S, Gupta AK, Puranik S, Singh S, et al. Nutraceutical Value of Finger Millet [Eleusine coracana (L.) Gaertn.], and Their Improvement Using Omics Approaches. Front Plant Sci. 2016;7:934.
5. Wanyera NMW. Finger Millet (Eleusine coracana)(L.) Gaertn) in Uganda. Finger Millet Blast Management in East Africa Creating opportunities for improving production and utilization of finger millet. 2005;:1.
6. Gupta SM, Arora S, Mirza N, Pande A, Lata C, Puranik S, et al. Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments. Front Plant Sci. 2017;8:643.
7. Mulualem T, Melak A. A survey on the status and constraints of finger millet (Eleusine coracana L.) production in Metekel Zone, North Western Ethiopia. Direct Research Journal of Agriculture and Food Science. 2013;1:67–72.
8. Werth CR, Hilu KW, Langner CA. Isozymes of Eleusine (Gramineae) and the origin of finger millet. Am J Bot. 1994;81:1186–97.
9. Hilu KW, Johnson JL. Systematics of Eleusine Gaertn. (Poaceae: Chloridoideae): Chloroplast DNA and Total Evidence. Ann Mo Bot Gard. 1997;84:841–7.
10. Bisht MS, Mukai Y. Genomic in situ hybridization identifies genome donor of finger millet (Eleusine coracana). Theor Appl Genet. 2001;102:825–32.
11. Liu Q, Triplett JK, Wen J, Peterson PM. Allotetraploid origin and divergence in Eleusine (Chloridoideae, Poaceae): evidence from low-copy nuclear gene phylogenies and a plastid gene chronogram. Ann Bot. 2011;108:1287–98.
12. Liu Q, Jiang B, Wen J, Peterson PM. Low-copy nuclear gene and McGISH resolves polyploid history of Eleusine coracana and morphological character evolution in Eleusine. Turk J Botany. 2014;38:1–12.
13. Hilu KW. Identification of the“ A” genome of finger millet using chloroplast DNA. Genetics. 1988;118:163–7.
14. Neves SS, Swire-Clark G, Hilu KW, Baird WV. Phylogeny of Eleusine (Poaceae: Chloridoideae) based on nuclear ITS and plastid trnT–trnF sequences. Mol Phylogenet Evol. 2005/5;35:395–419.
15. Varshney RK, Ribaut J-M, Buckler ES, Tuberosa R, Rafalski JA, Langridge P. Can genomics boost productivity of orphan crops? Nat Biotechnol. 2012;30:1172–6.
16. Hatakeyama M, Aluri S, Balachadran MT, Sivarajan SR, Patrignani A, Grüter S, et al. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res. 2017. doi:10.1093/dnares/dsx036.
17. Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol. 2016;16 Suppl 1:35.
18. VanBuren R, Bryant D, Edger PP, Tang H, Burgess D, Challabathula D, et al. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature. 2015;527:508–11.
19. Hastie AR, Dong L, Smith A, Finklestein J, Lam ET, Huo N, et al. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome. PLoS One. 2013;8:e55864.
20. Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet. 2015;47:598–606.
21. Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13:1050–4.
22. Schnable JC, Springer NM, Freeling M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci U S A. 2011;108:4069–74.
23. McKain MR, Estep MC, Pasquet R, Layton DJ, Vela Díaz DM, Zhong J, et al. Ancestry of the two subgenomes of maize. bioRxiv. 2018;:352351. doi:10.1101/352351.
24. Gordon SP, Levy JJ, Vogel JP. PolyCRACKER, a robust method for the unsupervised partitioning of polyploid subgenomes by signatures of repetitive DNA evolution. BMC Genomics. 2019;20:580.
25. VanBuren R, Wai CM, Pardo J, Yocca AE, Wang X, Wang H, et al. Exceptional subgenome stability and functional divergence in allotetraploid teff, the primary cereal crop in Ethiopia. bioRxiv. 2019;:580720. doi:10.1101/580720.
26. Salmon A, Flagel L, Ying B, Udall JA, Wendel JF. Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol. 2010;186:123–34.
27. Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33:531–7.
28. Paape T, Briskine RV, Halstead-Nussloch G, Lischer HEL, Shimizu-Inatsugi R, Hatakeyama M, et al. Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica. Nat Commun. 2018;9:3909.
29. Woodhouse MR, Cheng F, Pires JC, Lisch D, Freeling M, Wang X. Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proc Natl Acad Sci U S A. 2014;111:5283–8.
30. Flagel LE, Wendel JF. Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytologist. 2010;186:184–93. doi:10.1111/j.1469-8137.2009.03107.x.
31. Bottani S, Zabet NR, Wendel JF, Veitia RA. Gene Expression Dominance in Allopolyploids: Hypotheses and Models. Trends Plant Sci. 2018;23:393–402.
32. Li Q, Qiao X, Yin H, Zhou Y, Dong H, Qi K, et al. Unbiased subgenome evolution following a recent whole-genome duplication in pear (Pyrus bretschneideri Rehd.). Hortic Res. 2019;6:34.
33. Stephens SG. Possible Significance of Duplication in Evolution. In: Demerec M, editor. Advances in Genetics. Academic Press; 1951. p. 247–65.
34. Ohno S. Gene duplication. Evolution by Gene Duplication Springer-Verlag, New York. 1970;:59–65.
35. Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics. 2000;154:459–73.
36. Prince VE, Pickett FB. Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet. 2002;3:827–37.
37. Sharbrough J, Conover JL, Tate JA, Wendel JF, Sloan DB. Cytonuclear responses to genome doubling. Am J Bot. 2017;104:1277–80.
38. Oberprieler C, Talianova M, Griesenbeck J. Effects of polyploidy on the coordination of gene expression between organellar and nuclear genomes in Leucanthemum Mill. (Compositae, Anthemideae). Ecol Evol. 2019;9:9100–10.
39. Wolf JB. Cytonuclear interactions can favor the evolution of genomic imprinting. Evolution. 2009;63:1364–71.
40. Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. Polyploidy and genome evolution in plants. Curr Opin Genet Dev. 2015;35:119–25.
41. Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, et al. Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ. 2007;30:333–49.
42. Más P, Kim W-Y, Somers DE, Kay SA. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature. 2003;426:567–70.
43. Mao J, Zhang Y-C, Sang Y, Li Q-H, Yang H-Q. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A. 2005;102:12270–5.
44. Ni Z, Kim E-D, Ha M, Lackey E, Liu J, Zhang Y, et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature. 2009;457:327–31.
45. Stitt M, Zeeman SC. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol. 2012;15:282–92.
46. Gaut BS, Morton BR, McCaig BC, Clegg MT. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A. 1996;93:10274–9.
47. VanBuren R, Man Wai C, Wang X, Pardo J, Yocca AE, Wang H, et al. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat Commun. 2020;11:884.
48. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36 Database issue:D480–4.
49. Neves SS, Swire-Clark G, Hilu KW, Baird WV. Phylogeny of Eleusine (Poaceae: Chloridoideae) based on nuclear ITS and plastid trnT-trnF sequences. Mol Phylogenet Evol. 2005;35:395–419.
50. Bisht MS, Mukai Y. Identification of Genome Donors to the Wild Species of Finger Millet, Eleusine africana by Genomic in situ Hybridization. Breed Sci. 2001;51:263–9.
51. Zhang H, Hall N, Scott McElroy J, Lowe EK, Goertzen LR. Complete plastid genome sequence of goosegrass (Eleusine indica) and comparison with other Poaceae. Gene. 2016. doi:10.1016/j.gene.2016.11.038.
52. Jiao Y, Li J, Tang H, Paterson AH. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell. 2014;26:2792–802.
53. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, et al. Polyploidy and angiosperm diversification. Am J Bot. 2009;96:336–48.
54. Paterson AH, Bowers JE, Chapman BA. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A. 2004;101:9903–8.
55. Washburn JD, Schnable JC, Conant GC, Brutnell TP, Shao Y, Zhang Y, et al. Genome-Guided Phylo-Transcriptomic Methods and the Nuclear Phylogentic Tree of the Paniceae Grasses. Sci Rep. 2017;7:13528.
56. Hilu KW, de Wet JMJ. Domestication of Eleusine coracana. Econ Bot. 1976;30:199–208.
57. Phillips SM. A Survey of the Genus Eleusine Gaertn. (Gramineae) in Africa. Kew Bull. 1972;27:251–70.
58. Bhuiyan NH, Friso G, Poliakov A, Ponnala L, van Wijk KJ. MET1 Is a Thylakoid-Associated TPR Protein Involved in Photosystem II Supercomplex Formation and Repair in Arabidopsis. The Plant Cell. 2015;27:262–85. doi:10.1105/tpc.114.132787.
59. Ishikawa K, Matsui I, Payan F, Cambillau C, Ishida H, Kawarabayasi Y, et al. A hyperthermostable D-ribose-5-phosphate isomerase from Pyrococcus horikoshii characterization and three-dimensional structure. Structure. 2002;10:877–86.
60. Howles PA, Birch RJ, Collings DA, Gebbie LK, Hurley UA, Hocart CH, et al. A mutation in an Arabidopsis ribose 5-phosphate isomerase reduces cellulose synthesis and is rescued by exogenous uridine. Plant J. 2006;48:606–18.
61. Xiong Y, DeFraia C, Williams D, Zhang X, Mou Z. Deficiency in a cytosolic ribose-5-phosphate isomerase causes chloroplast dysfunction, late flowering and premature cell death in Arabidopsis. Physiol Plant. 2009;137:249–63.
62. Komatsu T, Kawaide H, Saito C, Yamagami A, Shimada S, Nakazawa M, et al. The chloroplast protein BPG2 functions in brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA. Plant J. 2010;61:409–22.
63. Kim B-H, Malec P, Waloszek A, von Arnim AG. Arabidopsis BPG2: a phytochrome-regulated gene whose protein product binds to plastid ribosomal RNAs. Planta. 2012;236:677–90.
64. Hawes JW, Crabb DW, Chan RM, Rougraff PM, Harris RA. Chemical modification and site-directed mutagenesis studies of rat 3-hydroxyisobutyrate dehydrogenase. Biochemistry. 1995;34:4231–7.
65. Schertl P, Danne L, Braun H-P. 3-Hydroxyisobutyrate Dehydrogenase Is Involved in Both, Valine and Isoleucine Degradation in Arabidopsis thaliana. Plant Physiology. 2017;175:51–61. doi:10.1104/pp.17.00649.
66. Viruel J, Kantar MB, Gargiulo R, Hesketh-Prichard P, Leong N, Cockel C, et al. Crop wild phylorelatives (CWPs): Phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. Bot J Linn Soc. 2020. https://academic.oup.com/botlinnean/advance-article-abstract/doi/10.1093/botlinnean/boaa064/5903667.
67. Zhang H, Hall N, Goertzen LR, Bi B, Chen CY, Peatman E, et al. Development of a goosegrass (Eleusine indica) draft genome and application to weed science research. Pest Manag Sci. 2019. doi:10.1002/ps.5389.
68. Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H, et al. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 2008;148:1772–81.
69. Lyons E, Freeling M. How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J. 2008;53:661–73.
70. Tang H, Lyons E, Pedersen B, Schnable JC, Paterson AH, Freeling M. Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinformatics. 2011;12:102.
71. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
72. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.
73. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
74. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
75. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
76. Quinlan AR. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr Protoc Bioinformatics. 2014;47:11.12.1–34.
77. Haas BJ, Papanicolaou A. TransDecoder (find coding regions within transcripts). 2016.
78. Chen S, McElroy JS, Dane F, Goertzen LR. Transcriptome Assembly and Comparison of an Allotetraploid Weed Species, Annual Bluegrass, with its Two Diploid Progenitor Species, Schrad and Kunth. Plant Genome. 2016;9. doi:10.3835/plantgenome2015.06.0050.
79. Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F. MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Mol Biol Evol. 2018;35:2582–4.
80. Kück P, Meusemann K. FASconCAT: Convenient handling of data matrices. Mol Phylogenet Evol. 2010;56:1115–8.
81. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol Biol Evol. 2016. doi:10.1093/molbev/msw260.
82. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
83. Haas BJ, Delcher AL, Wortman JR, Salzberg SL. DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics. 2004;20:3643–6.
84. Rambaut A. FigTree. Tree figure drawing tool version 1.3. 1. Institute of Evolutionary biology, University of Edinburgh. 2009.