[1] Biaoxue R, Xiguang C, Hua L, et al. Stathmin-dependent molecular targeting therapy for malignant tumor: the latest 5 years' discoveries and developments. J Transl Med.2016;14(1):279-97.
[2] Rong B, Cai X, Yang S, et al. EphA2-Dependent Molecular Targeting Therapy for Malignant Tumors. Curr Cancer Drug Targets. 2011;11(9):1082-97.
[3] Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162-9.
[4] Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med. 2018;20(5):e3015.
[5] Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669): 806-11.
[6] Patil, Y, Panyam, J. Polymeric nanoparticles for siRNA deliveryand gene silencing. Int J Pharm. 2009;367(1–2):195–203.
[7] Conde J, Tian F, Hernández Y, et al. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials. 2013;34(31):7744-53.
[8] Zhang D, Li B, Shi J, et al. Suppression of Tumor Growth and Metastasis by Simultaneously Blocking Vascular Endothelial Growth Factor (VEGF)-A and VEGF-C with a Receptor-Immunoglobulin Fusion Protein. Cancer Res. 2010;70(6):2495-503.
[9] Li F, Wang Y, Chen WL, et al. Co-delivery of VEGF siRNA and etoposide for enhanced anti-angiogenesis and anti-proliferation effect via multi-functional nanoparticles for orthotopic non-small cell lung cancer treatment. Theranostics. 2019;9(20): 5886-5898..
[10] Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435(7042): 677-81.
[11] Yu S, Gong LS, Li NF, et al. Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-κB and Bcl-2/Bax signaling pathways. Biomed Pharmacother. 2018; 97:213-224.
[12] Han SZ, Liu HX, Yang LQ, Cui LD, Xu Y. Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB. Biomed Pharmacother. 2017;96:1403-1410
[12] Lee SJ, Yook S, Yhee JY, et al. Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo. J Control Release. 2015; 220: 631-641
[14] Wu H, Medeiros LJ, Young KH.Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev. 2018; 32(1):8-28
[15] Li JM, Zhang W, Su H, et al. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier. Int J Nanomedicine. 2015;10:3147-62.
[16] Wu D, Yang J, Xing Z, et al. Phenylboronic acid-functionalized polyamidoamine-mediated Bcl-2 siRNA delivery for inhibiting the cell proliferation. Colloids Surf B Biointerfaces. 2016;146:318-325
[17] Qian J, Xu M, Suo A, et al. Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy. Acta Biomater. 2015;15:102-16.
[18] Lee, SJ, KimMJ, Kwon IC, RobertsTM.Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev. 2016;104:2-15.
[19] Allen, TM, Cullis, PR.Liposomal drug delivery systems:From concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48
[20] Palchetti S, Pozzi D, Marchini C, et al. Manipulation of lipoplex concentration at the cell surface boosts transfection efficiency in hard-to-transfect cells. 2017;13(2): 681-91.
[21] Shim G, Han SE, Yu YH, Lee S, Lee HY, Oh YK. Trilysinoyl oleylamide-basedcationic liposomes for systemic co-delivery of siRNA and an anticancer drug. J Control Release. 2011;155:60-6.
[22] BarenholzY. Liposome application: problems and prospects.Curr OpinColloid Interface Sci. 2001;6:66–77
[23] Yang ZZ, Li JQ, Wang ZZ, Dong DW, Qi XR. Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials. 2014; 35:5226-39.
[24] Abu LA, Okada T, Doi Y, Ichihara M, Ishida T, Kiwada H. Combinationtherapy with metronomic s-1 dosing and oxaliplatin-containing peg-coatedcationic liposomes in a murine colorectal tumor model: synergy orantagonism?. Int J Pharm. 2012; 426: 263-70.
[25] Kibria G, Hatakeyama H, Ohga N, et al. Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release. 2011;153(2):141-148.
[26] Takara K, Hatakeyama H,Ohga N, et al. Desigh of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on selectivity and cellular uptake. In J Pharm. 2010,153(2):141-148.
[27] Sutton D, Nasongkla N, Blanco E,et al. Functionalized micellar systems for cancer targeted drug delivery . Pharm Res. 2007;24(6):1029-46.2007
[28] Torchilin V. Targeted polymeric micelles for delivery of poorly soluble drugs.Cell Mol Life Sci. 2004;61(19-20):2549-59.
[29] Zhang L, Gao S, Zhang F, et al. Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy. Acs Nano. 2014;8(12):12250-8.
[30] Liu Y, Dai Z, Wang J, et al. Folate-targeted pH-sensitive bortezomib conjugates for cancer treatment.Chem Commun (Camb). 2019;55(29): 4254-4257
[31] Tian H, Lin L, Chen J, et al. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers.J Control Release. 2011;155(1): 47-53.
[32] Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release. 2006;114(3):277-87.
[33] Kluza E, van der Schaft DW, Hautvast PA,et al. Synergistic targeting of αvβ3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. Nano Lett. 2010; 10(1): 52-8.
[34] Ying X, Wen H, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141(2):183-192
[35] Noble GT, Stefanick JF, Ashley Jd,et al. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32-45.
[36] Sawant EE,Torchilin Vp. Challenges in Development of Targeted Liposomal Therapeutics. AAPS J. 2012;14(2):303-315.
[36] Tang J, Zhang L,Liu Y,et al. Synergistic targeted delivery of payload into tumor cells by dual-ligand lipsomes co-modified with cholesterol anchored transferrin and TAT. In J Pharm. 2013;454(1):31-40.