1 DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245-256, doi:10.1016/j.neuron.2011.09.011 (2011).
2 Renton, Alan E. et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 72, 257-268, doi:https://doi.org/10.1016/j.neuron.2011.09.010 (2011).
3 Gijselinck, I. et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. The Lancet Neurology 11, 54-65, doi:https://doi.org/10.1016/S1474-4422(11)70261-7 (2012).
4 Haeusler, A. R., Donnelly, C. J. & Rothstein, J. D. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci. 17, 383, doi:10.1038/nrn.2016.38
https://www.nature.com/articles/nrn.2016.38#supplementary-information (2016).
5 Brown, R. H. & Al-Chalabi, A. Amyotrophic Lateral Sclerosis. New Engl. J. Med. 377, 162-172, doi:10.1056/NEJMra1603471 (2017).
6 Balendra, R. & Isaacs, A. M. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. 14, 544-558, doi:10.1038/s41582-018-0047-2 (2018).
7 Donnelly, Christopher J. et al. RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron 80, 415-428, doi:https://doi.org/10.1016/j.neuron.2013.10.015 (2013).
8 Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl. Acad. Sci. U. S. A. 110, E4530, doi:10.1073/pnas.1318835110 (2013).
9 Sareen, D. et al. Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion. Sci. Transl. Med. 5, 208ra149, doi:10.1126/scitranslmed.3007529 (2013).
10 Reddy, K., Zamiri, B., Stanley, S. Y. R., Macgregor, R. B. & Pearson, C. E. The Disease-associated r(GGGGCC)n Repeat from the C9orf72 Gene Forms Tract Length-dependent Uni- and Multimolecular RNA G-quadruplex Structures. J. Biol. Chem. 288, 9860-9866, doi:10.1074/jbc.C113.452532 (2013).
11 Conlon, E. G. et al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. eLife 5, e17820, doi:10.7554/eLife.17820 (2016).
12 Yamakawa, M. et al. Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Hum. Mol. Genet. 24, 1630-1645, doi:10.1093/hmg/ddu576 (2015).
13 Lee, K. H. et al. C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell 167, 774-788 e717, doi:10.1016/j.cell.2016.10.002 (2016).
14 Zhang, Y.-J. et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 19, 668, doi:10.1038/nn.4272
https://www.nature.com/articles/nn.4272#supplementary-information (2016).
15 Shi, K. Y. et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc. Natl. Acad. Sci. U. S. A. 114, E1111-E1117, doi:10.1073/pnas.1620293114 (2017).
16 Yin, S. et al. Evidence that C9ORF72 Dipeptide Repeat Proteins Associate with U2 snRNP to Cause Mis-splicing in ALS/FTD Patients. Cell Rep 19, 2244-2256, doi:10.1016/j.celrep.2017.05.056 (2017).
17 Freibaum, B. D. & Taylor, J. P. The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. Front. Mol. Neurosci. 10, doi:10.3389/fnmol.2017.00035 (2017).
18 Mori, K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335-1338, doi:10.1126/science.1232927 (2013).
19 Ash, Peter E. A. et al. Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS. Neuron 77, 639-646, doi:https://doi.org/10.1016/j.neuron.2013.02.004 (2013).
20 Troakes, C. et al. An MND/ALS phenotype associated with C9orf72 repeat expansion: Abundant p62-positive, TDP-43-negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline. Neuropathology 32, 505-514, doi:10.1111/j.1440-1789.2011.01286.x (2012).
21 Lee, Y.-B. et al. C9orf72 poly GA RAN-translated protein plays a key role in amyotrophic lateral sclerosis via aggregation and toxicity. Hum. Mol. Genet. 26, 4765-4777, doi:10.1093/hmg/ddx350 (2017).
22 Mann, D. M. A. et al. Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol Commun 1, 68, doi:10.1186/2051-5960-1-68 (2013).
23 Davidson, Y. S. et al. Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol Commun 2, 70, doi:10.1186/2051-5960-2-70 (2014).
24 Edbauer, D. & Haass, C. An amyloid-like cascade hypothesis for C9orf72 ALS/FTD. Current Opinion in Neurobiology 36, 99-106, doi:https://doi.org/10.1016/j.conb.2015.10.009 (2016).
25 Chang, Y.-J., Jeng, U.-S., Chiang, Y.-L., Hwang, I.-S. & Chen, Y.-R. The Glycine-Alanine Dipeptide Repeat from C9orf72 Hexanucleotide Expansions Forms Toxic Amyloids Possessing Cell-to-Cell Transmission Properties. J. Biol. Chem. 291, 4903-4911, doi:10.1074/jbc.M115.694273 (2016).
26 Zhang, Y.-J. et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 128, 505-524, doi:10.1007/s00401-014-1336-5 (2014).
27 May, S. et al. C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol 128, 485-503, doi:10.1007/s00401-014-1329-4 (2014).
28 Cline, E. N., Bicca, M. A., Viola, K. L. & Klein, W. L. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis 64, S567-S610, doi:10.3233/JAD-179941 (2018).
29 Yamakawa, M. et al. Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Hum Mol Genet 24, 1630-1645, doi:10.1093/hmg/ddu576 (2015).
30 Nonaka, T. et al. C9ORF72 dipeptide repeat poly-GA inclusions promote intracellular aggregation of phosphorylated TDP-43. Hum. Mol. Genet. 27, 2658-2670, doi:10.1093/hmg/ddy174 (2018).
31 Morgado, I. et al. Molecular basis of β-amyloid oligomer recognition with a conformational antibody fragment. Proceedings of the National Academy of Sciences 109, 12503, doi:10.1073/pnas.1206433109 (2012).
32 Kayed, R. et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol. Neurodegener. 2, 18, doi:10.1186/1750-1326-2-18 (2007).
33 Chen, W. et al. Fluorescence Self-Quenching from Reporter Dyes Informs on the Structural Properties of Amyloid Clusters Formed in Vitro and in Cells. Nano Lett. 17, 143-149, doi:10.1021/acs.nanolett.6b03686 (2017).
34 Chou, C.-C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228-239, doi:10.1038/s41593-017-0047-3 (2018).
35 Lin, Y. et al. Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers. Cell 167, 789-802 e712, doi:10.1016/j.cell.2016.10.003 (2016).
36 Cavazza, T. & Vernos, I. The RanGTP Pathway: From Nucleo-Cytoplasmic Transport to Spindle Assembly and Beyond. Frontiers in Cell and Developmental Biology 3, doi:10.3389/fcell.2015.00082 (2016).
37 Lowe, A. R. et al. Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner. eLife 4, e04052, doi:10.7554/eLife.04052 (2015).
38 Paonessa, F. et al. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Reports 26, 582-593.e585, doi:https://doi.org/10.1016/j.celrep.2018.12.085 (2019).
39 Liu, K.-Y. et al. Disruption of the nuclear membrane by perinuclear inclusions of mutant huntingtin causes cell-cycle re-entry and striatal cell death in mouse and cell models of Huntington's disease. Hum. Mol. Genet. 24, 1602-1616, doi:10.1093/hmg/ddu574 (2015).
40 Diez, L. & Wegmann, S. Nuclear Transport Deficits in Tau-Related Neurodegenerative Diseases. Front. Neurol. 11, 1056-1056, doi:10.3389/fneur.2020.01056 (2020).
41 Worman, H. J. & Courvalin, J. C. in Int. Rev. Cytol. Vol. 246 231-279 (Academic Press, 2005).
42 Fusco, G. et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358, 1440, doi:10.1126/science.aan6160 (2017).
43 Fan, H. Y. & Heerklotz, H. Digitonin does not flip across cholesterol-poor membranes. Journal of Colloid and Interface Science 504, 283-293, doi:https://doi.org/10.1016/j.jcis.2017.05.034 (2017).
44 Liu, G. C.-H. et al. Delineating the membrane-disrupting and seeding properties of the TDP-43 amyloidogenic core. Chem. Commun. 49, 11212-11214, doi:10.1039/C3CC46762G (2013).
45 Neumann, M. et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 314, 130, doi:10.1126/science.1134108 (2006).
46 Gao, J., Wang, L., Huntley, M. L., Perry, G. & Wang, X. Pathomechanisms of TDP-43 in neurodegeneration. J. Neurochem. 146, 7-20, doi:10.1111/jnc.14327 (2018).
47 Hartmann, H. et al. Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD. Hum. Mol. Genet. 26, 790-800, doi:10.1093/hmg/ddw432 (2016).
48 Mackenzie, I. R. et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 126, 859-879, doi:10.1007/s00401-013-1181-y (2013).
49 Ayala, Y. M. et al. Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 121, 3778, doi:10.1242/jcs.038950 (2008).
50 Davidson, Y. et al. Neurodegeneration in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9orf72 is linked to TDP-43 pathology and not associated with aggregated forms of dipeptide repeat proteins. Neuropathol. Appl. Neurobiol. 42, 242-254, doi:10.1111/nan.12292 (2016).
51 Mackenzie, I. R. A. et al. Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathol 130, 845-861, doi:10.1007/s00401-015-1476-2 (2015).
52 Chew, J. et al. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348, 1151, doi:10.1126/science.aaa9344 (2015).
53 Ichikawa, M., Muramoto, K., Kobayashi, K., Kawahara, M. & Kuroda, Y. Formation and maturation of synapses in primary cultures of rat cerebral cortical cells: an electron microscopic study. Neurosci. Res. 16, 95-103, doi:https://doi.org/10.1016/0168-0102(93)90076-3 (1993).