[1] Rask-Madsen C, King G L. Vascular complications of diabetes: mechanisms of injury and protective factors[J]. Cell metabolism, 2013, 17(1): 20-33.
[2] Huynh K, Bernardo B C, McMullen J R, et al. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways[J]. Pharmacology & therapeutics, 2014, 142(3): 375-415.
[3] Jiwani A, Marseille E, Lohse N, et al. Gestational diabetes mellitus: results from a survey of country prevalence and practices[J]. The Journal of Maternal-Fetal & Neonatal Medicine, 2012, 25(6): 600-610.
[4] Danaei G, Finucane M M, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2· 7 million participants[J]. The lancet, 2011, 378(9785): 31-40.
[5] Fleisher L A, Beckman J A, Brown K A, et al. ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery)[J]. Circulation, 2007, 116(17): 1971-1996.
[6] Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus[J]. Circulation research, 2001, 88(2): e14-e22.
[7] Kanai F, Ito K, Todaka M, et al. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3 kinase[J]. Biochemical and biophysical research communications, 1993, 195(2): 762-768.
[8] Okada T, Kawano Y, Sakakibara T, et al. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin[J]. Journal of Biological Chemistry, 1994, 269(5): 3568-3573.
[9] Braccini L, Ciraolo E, Campa C C, et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling[J]. Nature communications, 2015, 6(1): 1-15.
[10] Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation[J]. Nature, 1999, 399(6736): 601-605.
[11] Cantley L C. The phosphoinositide 3-kinase pathway[J]. Science, 2002, 296(5573): 1655-1657.
[12] Maffei A, Lembo G, Carnevale D. PI3Kinases in Diabetes Mellitus and Its Related Complications[J]. International journal of molecular sciences, 2018, 19(12): 4098.
[13] Bathina S, Das U N. Dysregulation of PI3K-Akt-mTOR pathway in brain of streptozotocin-induced type 2 diabetes mellitus in Wistar rats[J]. Lipids in health and disease, 2018, 17(1): 1-11.
[14] Torres R C, Magalhães N S, e Silva P M R, et al. Activation of PPAR-γ reduces HPA axis activity in diabetic rats by up-regulating PI3K expression[J]. Experimental and molecular pathology, 2016, 101(2): 290-301.
[15] Kajikawa M, Noma K, Maruhashi T, et al. Rho-associated kinase activity is a predictor of cardiovascular outcomes[J]. Hypertension, 2014, 63(4): 856-864.
[16] Ocaranza M P, Valderas P, Moya J, et al. Rho kinase cascade activation in circulating leukocytes in patients with diabetes mellitus type 2[J]. Cardiovascular Diabetology, 2020, 19: 1-12.
[17] Soga J, Noma K, Hata T, et al. Rho-associated kinase activity, endothelial function, and cardiovascular risk factors[J]. Arteriosclerosis, thrombosis, and vascular biology, 2011, 31(10): 2353-2359.
[18] Yu J, Ogawa K, Tokinaga Y, et al. Sevoflurane Inhibits Guanosine 5′-[γ-thio] triphosphate–stimulated, Rho/Rho-kinase–mediated Contraction of Isolated Rat Aortic Smooth Muscle[J]. The Journal of the American Society of Anesthesiologists, 2003, 99(3): 646-651.
[19] Yu J, Tokinaga Y, Ogawa K, et al. Sevoflurane Inhibits Angiotensin II–induced, Protein Kinase C–mediated but Not Ca2+-elicited Contraction of Rat Aortic Smooth Muscle[J]. The Journal of the American Society of Anesthesiologists, 2004, 100(4): 879-884.
[20] Qi F, Ogawa K, Tokinaga Y, et al. Volatile anesthetics inhibit angiotensin II-induced vascular contraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation[J]. Anesthesia & Analgesia, 2009, 109(2): 412-417.
[21] Yang S, Wu Q, Huang S, et al. Sevoflurane and isoflurane inhibit KCl-induced Class II phosphoinositide 3-kinase α subunit mediated vasoconstriction in rat aorta[J]. BMC anesthesiology, 2015, 16(1): 63.
[22] Miyamoto Y, Feng G G, Satomi S, et al. Phosphatidylinositol 3-kinase inhibition induces vasodilator effect of sevoflurane via reduction of Rho kinase activity[J]. Life Sciences, 2017, 177: 20-26.
[23] Fujii K, Ogawa K, Tokinaga Y, et al. Sevoflurane does not alter norepinephrine-induced intracellular Ca2+ changes in the diabetic rat aorta[J]. Canadian Journal of Anesthesia/Journal canadien d'anesthésie, 2010, 57(12): 1095-1101.
[24] Negoro T, Mizumoto K, Ogawa K, et al. Effects of isoflurane and sevoflurane anesthesia on arteriovenous shunt flow in the lower limb of diabetic patients without autonomic neuropathy[J]. Anesthesiology, 2007, 107(1): 45-52.
[25] Kawano K, Hirashima T, Mori S, et al. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain[J]. Diabetes research and clinical practice, 1994, 24: S317-S320.
[26] Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas[J]. Diabetes research and clinical practice, 2019, 157: 107843.
[27] Islam M Z, Van Dao C, Miyamoto A, et al. Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and angiotensin II in streptozotocin-induced diabetic mice[J]. Naunyn-Schmiedeberg's archives of pharmacology, 2017, 390(9): 929-938.
[28] Ocaranza M P, Valderas P, Moya J, et al. Rho kinase cascade activation in circulating leukocytes in patients with diabetes mellitus type 2[J]. Cardiovascular Diabetology, 2020, 19: 1-12.
[29] Hofni A, Messiha B A S, Mangoura S A. Fasudil ameliorates endothelial dysfunction in streptozotocin-induced diabetic rats: a possible role of Rho kinase[J]. Naunyn-Schmiedeberg's archives of pharmacology, 2017, 390(8): 801-811.
[30] Olver T D, Grunewald Z I, Ghiarone T, et al. Persistent insulin signaling coupled with restricted PI3K activation causes insulin-induced vasoconstriction[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2019, 317(5): H1166-H1172.
[31] Liu Y, Wei J, Ma K T, et al. Carvacrol protects against diabetes-induced hypercontractility in the aorta through activation of the PI3K/Akt pathway[J]. Biomedicine & Pharmacotherapy, 2020, 125: 109825.
[32] Ruitenbeek A G, Van Der Cammen T J M, Van Den Meiracker A H, et al. Age and blood pressure levels modify the functional properties of central but not peripheral arteries[J]. Angiology, 2008, 59(3): 290-295.
[33] Eger II E I. The pharmacology of inhaled anesthetics[C]//Seminars in anesthesia, perioperative medicine and pain. WB Saunders, 2005, 24(2): 89-100.