[1] M. Zheng, and L. Song, Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cellular & molecular immunology (2020).
[2] A.C. Walls, Y.-J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, and D. Veesler, Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein. bioRxiv (2020) 2020.02.19.956581.
[3] A. Grifoni, J. Sidney, Y. Zhang, R.H. Scheuermann, B. Peters, and A. Sette, Candidate targets for immune responses to 2019-Novel Coronavirus (nCoV): sequence homology- and bioinformatic-based predictions. bioRxiv (2020) 2020.02.12.946087.
[4] S.F. Ahmed, A.A. Quadeer, and M.R. McKay, Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses 12 (2020) 254.
[5] G. Lucchese, Epitopes for a 2019-nCoV vaccine. Cellular & molecular immunology (2020).
[6] A. Pashov, V. Shivarov, M. Hadzhieva, V. Kostov, D. Ferdinandov, K.-M. Heintz, S. Pashova, M. Todorova, T. Vassilev, T. Kieber-Emmons, L.A. Meza-Zepeda, and E. Hovig, Diagnostic Profiling of the Human Public IgM Repertoire With Scalable Mimotope Libraries. Frontiers in Immunology 10 (2019).
[7] D. Wrapp, N. Wang, K.S. Corbett, J.A. Goldsmith, C.-L. Hsieh, O. Abiona, B.S. Graham, and J.S. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (2020) eabb2507.
[8] A.C. Walls, X. Xiong, Y.J. Park, M.A. Tortorici, J. Snijder, J. Quispe, E. Cameroni, R. Gopal, M. Dai, A. Lanzavecchia, M. Zambon, F.A. Rey, D. Corti, and D. Veesler, Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell 176 (2019) 1026-1039.e15.
[9] M. Felder, A. Kapur, J. Gonzalez-Bosquet, S. Horibata, J. Heintz, R. Albrecht, L. Fass, J. Kaur, K. Hu, H. Shojaei, R.J. Whelan, and M.S. Patankar, MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Molecular cancer 13 (2014) 129.
[10] Z. Cao, Y. Wang, Z.-Y. Liu, Z.-S. Zhang, S.-C. Ren, Y.-W. Yu, M. Qiao, B.-B. Zhai, and Y.-H. Sun, Overexpression of transglutaminase 4 and prostate cancer progression: a potential predictor of less favourable outcomes. Asian J Androl 15 (2013) 742-746.
[11] J. Burchell, and J. Taylor-Papadimitriou, Effect of modification of carbohydrate side chains on the reactivity of antibodies with core-protein epitopes of the MUC1 gene product. Epithelial Cell Biol 2 (1993) 155-162.
[12] J. Burchell, S. Gendler, J. Taylor-Papadimitriou, A. Girling, A. Lewis, R. Millis, and D. Lamport, Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer research 47 (1987) 5476-5482.
[13] E. Petrakou, A. Murray, and M.R. Price, Epitope mapping of anti-MUC1 mucin protein core monoclonal antibodies. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 19 Suppl 1 (1998) 21-29.
[14] D. Zhou, L. Xu, W. Huang, and T. Tonn, Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules (Basel, Switzerland) 23 (2018) 1326.
[15] N. Baumgarth, A two-phase model of B-cell activation. Immunol Rev 176 (2000) 171-80.
[16] A.F. Popi, I.M. Longo-Maugéri, and M. Mariano, An Overview of B-1 Cells as Antigen-Presenting Cells. Frontiers in immunology 7 (2016) 138-138.
[17] N. Baumgarth, O.C. Herman, G.C. Jager, L.E. Brown, L.A. Herzenberg, and J. Chen, B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 192 (2000) 271-280.
[18] P.D. Simitsek, D.G. Campbell, A. Lanzavecchia, N. Fairweather, and C. Watts, Modulation of antigen processing by bound antibodies can boost or suppress class II major histocompatibility complex presentation of different T cell determinants [see comments]. J Exp Med 181 (1995) 1957-63.
[19] J. Yang, E. James, M. Roti, L. Huston, J.A. Gebe, and W.W. Kwok, Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals. International immunology 21 (2009) 63-71.
[20] N. Baumgarth, J.W. Tung, and L.A. Herzenberg, Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol 26 (2005) 347-62.
[21] Y. He, Y. Zhou, H. Wu, B. Luo, J. Chen, W. Li, and S. Jiang, Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. Journal of immunology (Baltimore, Md. : 1950) 173 (2004) 4050-4057.
[22] I. Thevarajan, T.H.O. Nguyen, M. Koutsakos, J. Druce, L. Caly, C.E. van de Sandt, X. Jia, S. Nicholson, M. Catton, B. Cowie, S.Y.C. Tong, S.R. Lewin, and K. Kedzierska, Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature medicine (2020).