1. Galvin, O. et al. The Impact of Inherited Retinal Diseases in the Republic of Ireland (ROI) and the United Kingdom (UK) from a Cost-of-Illness Perspective. Clin. Ophthalmol. 14, 707–719 (2020).
2. Hanany, M., Rivolta, C. & Sharon, D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc. Natl. Acad. Sci. U. S. A. 117, 2710–2716 (2020).
3. Yohe, S. et al. Prevalence of mutations in inherited retinal diseases: A comparison between the United States and India. Mol Genet Genomic Med 8, e1081 (2020).
4. Jiman, O. A. et al. Diagnostic yield of panel-based genetic testing in syndromic inherited retinal disease. Eur. J. Hum. Genet. 28, 576–586 (2020).
5. Sheck, L. H. N. et al. Panel-based genetic testing for inherited retinal disease screening 176 genes. Mol Genet Genomic Med 9, e1663 (2021).
6. 100,000 Genomes Project Pilot Investigators et al. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report. N. Engl. J. Med. 385, 1868–1880 (2021).
7. Heiferman, M. J. & Fawzi, A. A. DISCORDANCE BETWEEN BLUE-LIGHT AUTOFLUORESCENCE AND NEAR-INFRARED AUTOFLUORESCENCE IN AGE-RELATED MACULAR DEGENERATION. Retina 36 Suppl 1, S137–S146 (2016).
8. Tanna, P. et al. Cross-Sectional and Longitudinal Assessment of the Ellipsoid Zone in Childhood-Onset Stargardt Disease. Transl. Vis. Sci. Technol. 8, 1 (2019).
9. Méjécase, C. et al. Practical guide to genetic screening for inherited eye diseases. Ther Adv Ophthalmol 12, 2515841420954592 (2020).
10. Pontikos, N. et al. Genetic basis of inherited retinal disease in a molecularly characterised cohort of over 3000 families from the United Kingdom. Ophthalmology (2020).
11. Rahman, N., Georgiou, M., Khan, K. N. & Michaelides, M. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options. Br. J. Ophthalmol. 104, 451–460 (2020).
12. Kousal, B. et al. Phenotypic features of CRB1-associated early-onset severe retinal dystrophy and the different molecular approaches to identifying the disease-causing variants. Graefes Arch. Clin. Exp. Ophthalmol. 254, 1833–1839 (2016).
13. Fujinami, Y. Y. et al. Prediction of Causative Genes in Inherited Retinal Disorders From Spectral-domain Optical Coherent Tomography Utilizing Deep Learning Techniques. Invest. Ophthalmol. Vis. Sci. 60, 2950–2950 (2019).
14. Shah, M., Roomans Ledo, A. & Rittscher, J. Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning. Acta Ophthalmol. 98, e715–e721 (2020).
15. Miere, A. et al. Deep Learning-Based Classification of Inherited Retinal Diseases Using Fundus Autofluorescence. J. Clin. Med. Res. 9, (2020).
16. Arun, N. et al. Assessing the Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging. Radiol Artif Intell 3, e200267 (2021).
17. Salahuddin, Z., Woodruff, H. C., Chatterjee, A. & Lambin, P. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Comput. Biol. Med. 140, 105111 (2021).
18. Cipriani, V. et al. An Improved Phenotype-Driven Tool for Rare Mendelian Variant Prioritization: Benchmarking Exomiser on Real Patient Whole-Exome Data. Genes 11, (2020).
19. Gattorno, M. et al. Classification criteria for autoinflammatory recurrent fevers. Ann. Rheum. Dis. 78, 1025–1032 (2019).
20. Tavtigian, S. V. et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet. Med. (2018) doi:10.1038/gim.2017.210.
21. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).
22. Hsieh, T.-C. et al. PEDIA: prioritization of exome data by image analysis. Genet. Med. 21, 2807–2814 (2019).
23. Maguire, A. M. et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374, 1597–1605 (2009).
24. Maguire, A. M. et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 358, 2240–2248 (2008).
25. Acland, G. M. et al. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 28, 92–95 (2001).
26. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) doi:10.1109/cvpr.2016.308.
27. Deng, J. et al. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009) doi:10.1109/cvpr.2009.5206848.
28. Ting, D. S. W. et al. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 103, 167–175 (2019).
29. Wolpert, D. H. Stacked generalization. Neural Netw. 5, 241–259 (1992).
30. Yang, L. et al. Genetic Spectrum of EYS-associated Retinal Disease in a Large Japanese Cohort: Identification of Disease-associated Variants with Relatively High Allele Frequency. Sci. Rep. 10, 5497 (2020).
31. Gupta, K., Walia, G. S. & Sharma, K. Quality based adaptive score fusion approach for multimodal biometric system. Applied Intelligence 50, 1086–1099 (2020).
32. Mittal, A., Moorthy, A. K. & Bovik, A. C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21, 4695–4708 (2012).