1 Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15, 565-581, doi:10.1038/s41582-019-0244-7 (2019).
2 Goedert, M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2, 492-501, doi:10.1038/35081564 (2001).
3 Kotzbauer, P. T., Trojanowsk, J. Q. & Lee, V. M. Lewy body pathology in Alzheimer's disease. J Mol Neurosci 17, 225-232, doi:10.1385/jmn:17:2:225 (2001).
4 Twohig, D. & Nielsen, H. M. α-synuclein in the pathophysiology of Alzheimer's disease. Mol Neurodegener 14, 23, doi:10.1186/s13024-019-0320-x (2019).
5 Alafuzoff, I. & Hartikainen, P. Alpha-synucleinopathies. Handb Clin Neurol 145, 339-353, doi:10.1016/b978-0-12-802395-2.00024-9 (2017).
6 Savica, R., Boeve, B. F. & Mielke, M. M. When Do α-Synucleinopathies Start? An Epidemiological Timeline: A Review. JAMA Neurol 75, 503-509, doi:10.1001/jamaneurol.2017.4243 (2018).
7 Walker, L. et al. Neuropathologically mixed Alzheimer's and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol 129, 729-748, doi:10.1007/s00401-015-1406-3 (2015).
8 Coughlin, D. G. et al. Hippocampal subfield pathologic burden in Lewy body diseases vs. Alzheimer's disease. Neuropathol Appl Neurobiol, doi:10.1111/nan.12659 (2020).
9 Ferman, T. J. et al. The limbic and neocortical contribution of alpha-synuclein, tau, and amyloid beta to disease duration in dementia with Lewy bodies. Alzheimers Dement 14, 330-339, doi:10.1016/j.jalz.2017.09.014 (2018).
10 Ferrucci, L. et al. Measuring biological aging in humans: A quest. Aging Cell 19, e13080, doi:10.1111/acel.13080 (2020).
11 Royce, G. H., Brown-Borg, H. M. & Deepa, S. S. The potential role of necroptosis in inflammaging and aging. Geroscience 41, 795-811, doi:10.1007/s11357-019-00131-w (2019).
12 López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194-1217, doi:10.1016/j.cell.2013.05.039 (2013).
13 Saez-Atienzar, S. & Masliah, E. Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nat Rev Neurosci 21, 433-444, doi:10.1038/s41583-020-0325-z (2020).
14 Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20, 421-435, doi:10.1038/s41580-019-0101-y (2019).
15 Scott, D. A. et al. A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci 30, 8083-8095, doi:10.1523/jneurosci.1091-10.2010 (2010).
16 Lee, S. J., Desplats, P., Sigurdson, C., Tsigelny, I. & Masliah, E. Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 6, 702-706, doi:10.1038/nrneurol.2010.145 (2010).
17 Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 106, 13010-13015, doi:10.1073/pnas.0903691106 (2009).
18 Thakur, P. et al. Modeling Parkinson's disease pathology by combination of fibril seeds and α-synuclein overexpression in the rat brain. Proc Natl Acad Sci U S A 114, E8284-e8293, doi:10.1073/pnas.1710442114 (2017).
19 Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949-953, doi:10.1126/science.1227157 (2012).
20 Lee, H. J., Bae, E. J. & Lee, S. J. Extracellular α--synuclein-a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10, 92-98, doi:10.1038/nrneurol.2013.275 (2014).
21 Van der Perren, A. et al. The structural differences between patient-derived alpha-synuclein strains dictate characteristics of Parkinson's disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol 139, 977-1000, doi:10.1007/s00401-020-02157-3 (2020).
22 Peralta Ramos, J. M. et al. Peripheral Inflammation Regulates CNS Immune Surveillance Through the Recruitment of Inflammatory Monocytes Upon Systemic α-Synuclein Administration. Front Immunol 10, 80, doi:10.3389/fimmu.2019.00080 (2019).
23 Surendranathan, A., Rowe, J. B. & O'Brien, J. T. Neuroinflammation in Lewy body dementia. Parkinsonism Relat Disord 21, 1398-1406, doi:10.1016/j.parkreldis.2015.10.009 (2015).
24 Allen Reish, H. E. & Standaert, D. G. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. J Parkinsons Dis 5, 1-19, doi:10.3233/jpd-140491 (2015).
25 Gelders, G., Baekelandt, V. & Van der Perren, A. Linking Neuroinflammation and Neurodegeneration in Parkinson's Disease. J Immunol Res 2018, 4784268, doi:10.1155/2018/4784268 (2018).
26 Kim, C. et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4, 1562, doi:10.1038/ncomms2534 (2013).
27 Lee, H. J. et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285, 9262-9272, doi:10.1074/jbc.M109.081125 (2010).
28 Grozdanov, V. et al. Increased Immune Activation by Pathologic α-Synuclein in Parkinson's Disease. Ann Neurol 86, 593-606, doi:10.1002/ana.25557 (2019).
29 Hughes, C. D. et al. Picomolar concentrations of oligomeric alpha-synuclein sensitizes TLR4 to play an initiating role in Parkinson's disease pathogenesis. Acta Neuropathol 137, 103-120, doi:10.1007/s00401-018-1907-y (2019).
30 Kim, C. et al. Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol Neurodegener 13, 43, doi:10.1186/s13024-018-0276-2 (2018).
31 Caplan, I. F. & Maguire-Zeiss, K. A. Toll-Like Receptor 2 Signaling and Current Approaches for Therapeutic Modulation in Synucleinopathies. Front Pharmacol 9, 417, doi:10.3389/fphar.2018.00417 (2018).
32 La Vitola, P. et al. Alpha-synuclein oligomers impair memory through glial cell activation and via Toll-like receptor 2. Brain Behav Immun 69, 591-602, doi:10.1016/j.bbi.2018.02.012 (2018).
33 Dzamko, N. et al. Toll-like receptor 2 is increased in neurons in Parkinson's disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol 133, 303-319, doi:10.1007/s00401-016-1648-8 (2017).
34 Galiano-Landeira, J., Torra, A., Vila, M. & Bove, J. CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson's disease. Brain, doi:10.1093/brain/awaa269 (2020).
35 Lindestam Arlehamn, C. S., Garretti, F., Sulzer, D. & Sette, A. Roles for the adaptive immune system in Parkinson's and Alzheimer's diseases. Curr Opin Immunol 59, 115-120, doi:10.1016/j.coi.2019.07.004 (2019).
36 Iba, M. et al. Neuroinflammation is associated with infiltration of T cells in Lewy body disease and alpha-synuclein transgenic models. J Neuroinflammation 17, 214, doi:10.1186/s12974-020-01888-0 (2020).
37 Subbarayan, M. S., Hudson, C., Moss, L. D., Nash, K. R. & Bickford, P. C. T cell infiltration and upregulation of MHCII in microglia leads to accelerated neuronal loss in an alpha-synuclein rat model of Parkinson's disease. J Neuroinflammation 17, 242, doi:10.1186/s12974-020-01911-4 (2020).
38 Watson, M. B. et al. Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 237, 318-334, doi:10.1016/j.expneurol.2012.06.025 (2012).
39 Su, X. et al. Synuclein activates microglia in a model of Parkinson's disease. Neurobiol Aging 29, 1690-1701, doi:10.1016/j.neurobiolaging.2007.04.006 (2008).
40 Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat Commun 9, 539, doi:10.1038/s41467-018-02926-5 (2018).
41 Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596-602, doi:10.1038/s41586-020-2499-y (2020).
42 Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat Neurosci 22, 1696-1708, doi:10.1038/s41593-019-0491-3 (2019).
43 Chen, J., Xu, H., Aronow, B. J. & Jegga, A. G. Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics 8, 392, doi:10.1186/1471-2105-8-392 (2007).
44 Motenko, H., Neuhauser, S. B., O'Keefe, M. & Richardson, J. E. MouseMine: a new data warehouse for MGI. Mamm Genome 26, 325-330, doi:10.1007/s00335-015-9573-z (2015).
45 Campos-Acuña, J., Elgueta, D. & Pacheco, R. T-Cell-Driven Inflammation as a Mediator of the Gut-Brain Axis Involved in Parkinson's Disease. Front Immunol 10, 239, doi:10.3389/fimmu.2019.00239 (2019).
46 Earls, R. H. et al. Intrastriatal injection of preformed alpha-synuclein fibrils alters central and peripheral immune cell profiles in non-transgenic mice. J Neuroinflammation 16, 250, doi:10.1186/s12974-019-1636-8 (2019).
47 Harms, A. S. et al. α-Synuclein fibrils recruit peripheral immune cells in the rat brain prior to neurodegeneration. Acta Neuropathol Commun 5, 85, doi:10.1186/s40478-017-0494-9 (2017).
48 Challis, C. et al. Gut-seeded alpha-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat Neurosci 23, 327-336, doi:10.1038/s41593-020-0589-7 (2020).
49 Pangrazzi, L. & Weinberger, B. T cells, aging and senescence. Exp Gerontol 134, 110887, doi:10.1016/j.exger.2020.110887 (2020).
50 Chen, Z., Chen, S. & Liu, J. The role of T cells in the pathogenesis of Parkinson's disease. Prog Neurobiol 169, 1-23, doi:10.1016/j.pneurobio.2018.08.002 (2018).
51 Lindestam Arlehamn, C. S. et al. α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson's disease. Nat Commun 11, 1875, doi:10.1038/s41467-020-15626-w (2020).
52 Williams, G. P. et al. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol 139, 855-874, doi:10.1007/s00401-020-02126-w (2020).
53 Chandra, G., Roy, A., Rangasamy, S. B. & Pahan, K. Induction of Adaptive Immunity Leads to Nigrostriatal Disease Progression in MPTP Mouse Model of Parkinson's Disease. J Immunol 198, 4312-4326, doi:10.4049/jimmunol.1700149 (2017).
54 Seo, J. et al. Chronic Infiltration of T Lymphocytes into the Brain in a Non-human Primate Model of Parkinson's Disease. Neuroscience 431, 73-85, doi:10.1016/j.neuroscience.2020.01.043 (2020).
55 Dikmen, H. O. et al. GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. J Neuroinflammation 17, 235, doi:10.1186/s12974-020-01903-4 (2020).
56 Chitu, V. et al. Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP). Neurobiol Dis 74, 219-228, doi:10.1016/j.nbd.2014.12.001 (2015).
57 Chitu, V. et al. Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. Cell Rep 30, 3004-3019 e3005, doi:10.1016/j.celrep.2020.02.028 (2020).
58 Walker, D. G., Tang, T. M. & Lue, L. F. Studies on Colony Stimulating Factor Receptor-1 and Ligands Colony Stimulating Factor-1 and Interleukin-34 in Alzheimer's Disease Brains and Human Microglia. Front Aging Neurosci 9, 244, doi:10.3389/fnagi.2017.00244 (2017).
59 Beraud, D. & Maguire-Zeiss, K. A. Misfolded alpha-synuclein and Toll-like receptors: therapeutic targets for Parkinson's disease. Parkinsonism Relat Disord 18 Suppl 1, S17-20, doi:10.1016/S1353-8020(11)70008-6 (2012).
60 Zhang, B. et al. Stereotaxic Targeting of Alpha-Synuclein Pathology in Mouse Brain Using Preformed Fibrils. Methods Mol Biol 1948, 45-57, doi:10.1007/978-1-4939-9124-2_5 (2019).