Changes in SWR for control and experimental vessels under different conditions
An experiment was carried out to obtain preliminary SWR measurements for a vessel containing only soil (control vessel) using a coil probe located above the vessel. Using the same system, a vessel containing the plant Fatoua villosa (experimental vessel) was also examined. SWR variations at 1.0–2.0 GHz for the control and the experimental vessels under various conditions are shown in Fig. 1. For the control vessel, SWR showed multiple peaks with a minimum at 2.2 and a maximum at 16.3. No significant variation in the SWR was observed with the addition of water to the control vessel. However, when water was added to the experimental vessel, differences in the SWR, compared with that of the control vessel, were observed throughout the frequency range. As shown in Fig. 1, the experimental vessel induced two peak frequencies, and its SWR values were lower than those of the control vessel throughout the frequency range. For instance, the control vessel showed a peak at 1.629 GHz with an SWR of 16.1, whereas the experimental vessel showed a left-shifted peak at 1.620 GHz with an SWR of 14.8. At frequency ranges of 1.197–1.202 GHz, 1.323–1.341 GHz, 1.710–1.737 GHz GHz, and 1.917–1.935 GHz, reduced and shifted SWR were observed for the experimental vessel, probably due to the presence of stem water and magnetic particles in the stem water flow that changed the RF characteristics of the coil probe [10].
To evaluate the effect of water addition on F. villosa, SWR measurements were obtained after 3 d of no watering and 3 h post-watering. As shown in Fig. 1, watering generated major and minor SWR changes compared with no watering throughout the frequency range. For instance, post-watering SWR changed by 2.4 ± 0.61% at 1.026 GHz, 2.1 ± 0.83% at 1.197 GHz, 3.1 ± 0.91% at 1.467 GHz, and 2.27 ± 0.57% at 1.620 GHz. These results indicated that interaction between water and the live plant induced SWR changes at specific frequencies that the coil probe could monitor. These SWR changes were probably caused by plant physiological activities, including transpiration and water transportation, that affected the RF characteristics of the coil probe [16].
To evaluate the effect of illumination on F. villosa, SWR measurements were obtained after 3 d of no watering and 3 h post-watering without illumination. No differences were observed in the SWR post-watering with or without illumination. However, when Radermachera sinica was used as an experimental plant, watering with or without illumination yielded markedly different SWR at 1.0–2.0 GHz. As shown in Fig. 2, watering under illumination decreased the SWR by 11.8 ± 0.79% at 1.170 GHz, increased it by 10.9 ± 0.85% at 1.611 GHz, and decreased it by 9.9 ± 0.93% at 1.908 GHz. The dead plants showed significantly different SWR compared with those of the live plants but almost identical with those of the control vessel (Fig. 2). Therefore, the plant configuration (i.e., leaf number, leaf shape, and stem length) and physiological activities (i.e., photosynthesis, stem water flow, water content, and concentration of magnetic materials) might affect SWR throughout the frequency range. To evaluate the accuracy and reproducibility of our results, further experiments were carried out with various live plants under the same experimental conditions.
Various experimental plants were examined using the same monitoring system after 7 d, 5 d, and 3 d of no watering for Ficus benghalensis, Dypsis lutescens, and Salvia rosmarinus, respectively, as well as at 3 h post-watering, with or without illumination. As shown in Fig. 3, no watering or watering with or without illumination yielded diverse SWR for each plant species. For F. benghalensis, watering markedly decreased the SWR at 1.620 GHz and 1.710 GHz, whereas illumination did not have a significant effect (Fig. 3). For D. lutescens, watering without illumination decreased the SWR at 1.620 and 1.702 GHz (Fig. 4). For S. rosmarinus, watering with illumination increased the SWR at 1.620 GHz but decreased it with or without illumination at 1.701 GHz (Fig. 3). Variations among the plant species could be attributed to differences in evapotranspiration rates, physiological activities, and water contents.
Effect of watering and illumination on SWR in R. sinica
To study the SWR-based activities post-watering, we selected R. sinica that yielded the highest and more reproducible SWR variation under different watering and illumination conditions at the frequency range of 1.600–1.630 GHz (Fig. 4). We observed a rapid decrease in the SWR at 1 h post-watering, followed by a gradual increase with time and stabilization at 3 h post-watering. Significant error signals (p > 0.05) were observed at 1 h post-watering but reduced at 3 h post-watering. The SWR continually decreased up to 72 h post-watering. Repeated experiments showed that 1.611 GHz was the most reproducible frequency for SWR measurements (Fig. 4). Thus, the effect of watering at 3-d intervals on live and dead plants with or without illumination was further monitored at 1.611 GHz for 72 d.
As shown in Fig. 5, the effect of plant photosynthetic activity on the SWR of live and dead plants was assessed for 72 d with (0–17 d and 36–53 d) and without illumination (18–35 d and 54–72 d). At 0–17 d, watering rapidly decreased the SWR of the live plants, but the values gradually recovered at 3 d post-watering. However, the live plants showed a higher decrease in the SWR post-watering without illumination compared with that post-watering with illumination. No significant differences were observed in the SWR at 0–17 d and 36–53 d as well as those at 18–35 d and 54–72 d (Fig. 5). These results indicated that photosynthesis was related to the SWR and that the plant vital activities related to photosynthesis could be assessed using this method. Variation in the SWR post-watering was only observed for the live plant.
To identify the correlation between the SWR and the water content, we used the dry weight method. To this end, mainly leaves from the live plants and stems from the dead plants were collected throughout the 72 d, and the SWR at 1.611 GHz was recorded at the sampling time. As shown in Fig. 6, variations in the SWR and water content were relatively high with or without illumination for the live plant, whereas no significant variations in the SWR or the water content were observed for the dead plant. Besides, the live plant without illumination showed slightly higher water content and lower SWR than that with illumination. Previous studies suggested that dark conditions decrease transpiration due to stomatal closing, resulting in increased water content [17, 18] and negatively affecting photosynthesis [19]. Our study showed that depressed photosynthesis due to lack of illumination impaired vital activities such as water flow, transpiration, and evapotranspiration. Variations in the SWR and water content induced changes in the RF characteristics of the coil probe. Therefore, monitoring of SWR changes at a specific frequency range could provide a possible way to assess vital activities in plants.
Previous studies used water monitoring techniques that required invasive sensors and time-consuming procedures. In contrast, our proposed monitoring system is non-invasive and provides accurate results in a relatively short time. It is known that SWR variations based on capacitance [20] or inductance changes [21] caused by mobile paramagnetic components in plant water might allow the non-invasive assessment of stem water content. In the present study, variations in the SWR at a specific frequency range were used to monitor changes in the water content and vital activities of experimental plants. Multiple resonance frequency points with resonance frequency shifts have great potential for developing plant activity scanners.
Preliminary experiments with different plant species [10] indicated that electrical factors, such as the diameter and winding number of the coil probe, significantly affect the measurement results. Higher frequency ranges (i.e., 2.0–4.0 GHz) produced noticeable SWR variation post-watering (Additional file 1: Fig. S1)., whereas frequencies < 1.0 GHz were not used because of the increased noise (Additional file 1: Fig. S2). Our results indicated that electrical (i.e., winding number and diameter of the probe), biological (i.e., plant age, growth, type, and size), and environmental (i.e., water, illumination, and fertilization) factors could affect the SWR. Therefore, our monitoring system could be used for other plant species and different conditions using modified probes.