1. Lewis, S. and A. South, The evolution of animal nuptial gifts, in Advances in the Study of Behavior. 2012, Elsevier. p. 53-97.
2. Albo, M.J., T. Bilde, and G. Uhl, Sperm storage mediated by cryptic female choice for nuptial gifts. Proceedings of the Royal Society B: Biological Sciences, 2013. 280(1772): p. 20131735.
3. Lee, K.-M., et al., A neuronal pathway that controls sperm ejection and storage in female Drosophila. Current Biology, 2015. 25(6): p. 790-797.
4. Dus, M., et al., Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron, 2015. 87(1): p. 139-151.
5. Toft, S. and M.J. Albo, Optimal numbers of matings: the conditional balance between benefits and costs of mating for females of a nuptial gift‐giving spider. Journal of Evolutionary Biology, 2015. 28(2): p. 457-467.
6. Judge, K.A., P.A. De Luca, and G.K. Morris, Food limitation causes female haglids to mate more often. Canadian journal of zoology, 2011. 89(10): p. 992-998.
7. Markow, T.A., A. Coppola, and T.D. Watts, How Drosophila males make eggs: it is elemental. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2001. 268(1475): p. 1527-1532.
8. Chen, P.S., et al., A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell, 1988. 54(3): p. 291-298.
9. Voigt, C.C., R. Michener, and T.H. Kunz, The energetics of trading nuptial gifts for copulations in katydids. Physiological and Biochemical Zoology, 2005. 78(3): p. 417-423.
10. Steele, R.H., Courtship feeding in Drosophila subobscura. II. Courtship feeding by males influences female mate choice. Animal Behaviour, 1986. 34(4): p. 1099-1108.
11. Kikawada, T., et al., Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proceedings of the National Academy of Sciences, 2007. 104(28): p. 11585-11590.
12. Kohatsu, S. and D. Yamamoto, Visually induced initiation of Drosophila innate courtship-like following pursuit is mediated by central excitatory state. Nature communications, 2015. 6(1): p. 1-9.
13. Kim, Y.-J., et al., A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Current Biology, 2006. 16(14): p. 1395-1407.
14. Gao, X.J., et al., A transcriptional reporter of intracellular Ca2+ in Drosophila. Nature neuroscience, 2015. 18(6): p. 917-925.
15. Mohammad, F., et al., Optogenetic inhibition of behavior with anion channelrhodopsins. Nature methods, 2017. 14(3): p. 271-274.
16. Hamada, F.N., et al., An internal thermal sensor controlling temperature preference in Drosophila. Nature, 2008. 454(7201): p. 217-220.
17. Pryde, J., Sugar of human semen. Nature, 1946. 157(3994): p. 660-660.
18. Blum, M.S., Z. Glowska, and S. Taber III, Chemistry of the drone honey bee reproductive system. II. Carbohydrates in the reproductive organs and semen. Annals of the Entomological Society of America, 1962. 55(1): p. 135-139.
19. Mattei, A.L., et al., Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning. Proceedings of the National Academy of Sciences, 2015. 112(27): p. 8475-8480.
20. Chen, P., et al., Isolation and characterization of a unique galactoside from male Drosophila melanogaster. Biochemistry, 1977. 16(18): p. 4080-4085.
21. Tayler, T.D., et al., A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proceedings of the National Academy of Sciences, 2012. 109(50): p. 20697-20702.
22. Wainwright, S.M., et al., Drosophila Sex Peptide controls the assembly of lipid microcarriers in seminal fluid. Proceedings of the National Academy of Sciences, 2021. 118(5): p. e2019622118.
23. Yin, Y., et al., dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic acids research, 2012. 40(W1): p. W445-W451.
24. Drula, E., et al., The carbohydrate-active enzyme database: functions and literature. Nucleic acids research, 2022. 50(D1): p. D571-D577.
25. Coutinho, P.M., et al., An evolving hierarchical family classification for glycosyltransferases. Journal of molecular biology, 2003. 328(2): p. 307-317.
26. Ruhmann, H., et al., Early reproductive success in Drosophila males is dependent on maturity of the accessory gland. Behavioral Ecology, 2016. 27(6): p. 1859-1868.
27. Tryjanowski, P. and M. Hromada, Do males of the great grey shrike, Lanius excubitor, trade food for extrapair copulations? Animal Behaviour, 2005. 69(3): p. 529-533.
28. Fedina, T.Y., Cryptic female choice during spermatophore transfer in Tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Insect Physiology, 2007. 53(1): p. 93-98.
29. Piper, M.D., et al., A holidic medium for Drosophila melanogaster. Nature methods, 2014. 11(1): p. 100-105.
30. Manier, M.K., et al., Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. science, 2010. 328(5976): p. 354-357.
31. Dus, M., et al., Taste-independent detection of the caloric content of sugar in Drosophila. Proceedings of the National Academy of Sciences, 2011. 108(28): p. 11644-11649.
32. Zhang, C., et al., The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nature communications, 2022. 13(1): p. 1-15.
33. Immarigeon, C., et al., Identification of a micropeptide and multiple secondary cell genes that modulate Drosophila male reproductive success. Proceedings of the National Academy of Sciences, 2021. 118(15): p. e2001897118.
34. Chen, Q., et al., Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster. Journal of Biological Chemistry, 2002. 277(5): p. 3274-3279.
35. Haselton, A.T. and Y.-W.C. Fridell, Insulin injection and hemolymph extraction to measure insulin sensitivity in adult Drosophila melanogaster. JoVE (Journal of Visualized Experiments), 2011(52): p. e2722.
36. Cabrero, P., et al., The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP. Journal of Experimental Biology, 2002. 205(24): p. 3799-3807.
37. Croset, V., et al., A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Scientific reports, 2016. 6(1): p. 1-13.
38. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature methods, 2012. 9(7): p. 671-675.
39. Yates, A.D., et al., Ensembl 2020. Nucleic acids research, 2020. 48(D1): p. D682-D688.
40. Gramates, L.S., et al., FlyBase: a guided tour of highlighted features. Genetics, 2022. 220(4): p. iyac035.
41. Bray, N.L., et al., Near-optimal probabilistic RNA-seq quantification. Nature biotechnology, 2016. 34(5): p. 525-527.