1. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19, 281-296 (2018).
2. Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov 20, 589-610 (2021).
3. Snaebjornsson, M.T., Janaki-Raman, S. & Schulze, A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metab 31, 62-76 (2020).
4. Huby, T. & Gautier, E.L. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol 22, 429-443 (2022).
5. Baek, J., He, C.C., Afshinnia, F., Michailidis, G. & Pennathur, S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 18, 38-55 (2022).
6. Johnson, A.A. & Stolzing, A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 18, e13048 (2019).
7. Khosla, S., Farr, J.N., Tchkonia, T. & Kirkland, J.L. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 16, 263-275 (2020).
8. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15, 505-522 (2018).
9. Mutlu, A.S., Duffy, J. & Wang, M.C. Lipid metabolism and lipid signals in aging and longevity. Dev Cell 56, 1394-1407 (2021).
10. Sacket, S.J., Chung, H.Y., Okajima, F. & Im, D.S. Increase in sphingolipid catabolic enzyme activity during aging. Acta Pharmacol Sin 30, 1454-1461 (2009).
11. Mielke, M.M., et al. Serum ceramides increase the risk of Alzheimer disease The Women's Health and Aging Study II. Neurology 79, 633-641 (2012).
12. Streeper, R.S., et al. Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice. Aging (Albany NY) 4, 13-27 (2012).
13. Su, L.J., et al. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid Med Cell Longev 2019, 5080843 (2019).
14. Ponnappan, U., Holley, D.H. & Lipschitz, D.A. Effect of age on the fatty acid composition of phospholipids in human lymphocytes. Exp Gerontol 31, 125-133 (1996).
15. Rabini, R.A., et al. Reduced susceptibility to peroxidation of erythrocyte plasma membranes from centenarians. Exp Gerontol 37, 657-663 (2002).
16. Mitchell, T.W., Buffenstein, R. & Hulbert, A.J. Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): A comparative study using shotgun lipidomics. Exp Gerontol 42, 1053-1062 (2007).
17. Nagpal, R., et al. Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging 4, 267-285 (2018).
18. Albouery, M., et al. Age-Related Changes in the Gut Microbiota Modify Brain Lipid Composition. Front Cell Infect Mi 9(2020).
19. Naoe, S., Tsugawa, H., Takahashi, M., Ikeda, K. & Arita, M. Characterization of Lipid Profiles after Dietary Intake of Polyunsaturated Fatty Acids Using Integrated Untargeted and Targeted Lipidomics. Metabolites 9(2019).
20. Weger, B.D., et al. The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. Cell Metab 29, 362-+ (2019).
21. Yasuda, S., et al. Elucidation of Gut Microbiota-Associated Lipids Using LC-MS/MS and 16S rRNA Sequence Analyses. Iscience 23(2020).
22. Ghorasaini, M., et al. Cross-Laboratory Standardization of Preclinical Lipidomics Using Differential Mobility Spectrometry and Multiple Reaction Monitoring. Anal Chem 93, 16369-16378 (2021).
23. Tsugawa, H., et al. A lipidome atlas in MS-DIAL 4. Nat Biotechnol 38, 1159-+ (2020).
24. Gonzalez-Covarrubias, V. Lipidomics in longevity and healthy aging. Biogerontology 14, 663-672 (2013).
25. Slade, E., et al. Age and sex are associated with the plasma lipidome: findings from the GOLDN study. Lipids Health Dis 20(2021).
26. Beyene, H.B., et al. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: Evidence from two large population cohort studies (vol 18, e3000870, 2020). Plos Biol 18(2020).
27. Eum, J.Y., et al. Aging-related lipidomic changes in mouse serum, kidney, and heart by nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1618(2020).
28. Papsdorf, K. & Brunet, A. Linking Lipid Metabolism to Chromatin Regulation in Aging. Trends Cell Biol 29, 97-116 (2019).
29. Pollard, A.K., Ortori, C.A., Stoger, R., Barrett, D.A. & Chakrabarti, L. Mouse mitochondrial lipid composition is defined by age in brain and muscle. Aging-Us 9, 986-998 (2017).
30. Ding, J., et al. A metabolome atlas of the aging mouse brain. Nat Commun 12(2021).
31. Okahashi, N., Ueda, M., Yasuda, S., Tsugawa, H. & Arita, M. Global profiling of gut microbiota-associated lipid metabolites in antibiotic-treated mice by LC-MS/MS-based analyses. STAR Protoc 2, 100492 (2021).
32. Velagapudi, V.R., et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51, 1101-1112 (2010).
33. Grabner, G.F., et al. Metabolic regulation of the lysosomal cofactor bis(monoacylglycero)phosphate in mice. Journal of Lipid Research 61, 995-1003 (2020).
34. Showalter, M.R., et al. The Emerging and Diverse Roles of Bis(monoacylglycero) Phosphate Lipids in Cellular Physiology and Disease. Int J Mol Sci 21(2020).
35. Jojima, K., Edagawa, M., Sawai, M., Ohno, Y. & Kihara, A. Biosynthesis of the anti-lipid-microdomain sphingoid base 4,14-sphingadiene by the ceramide desaturase FADS3. Faseb J 34, 3318-3335 (2020).
36. Pergande, M.R., et al. Lipidomic analysis identifies age-disease-related changes and potential new biomarkers in brain-derived extracellular vesicles from metachromatic leukodystrophy mice. Lipids Health Dis 21(2022).
37. Slomiany, B.L., Murty, V.L.N., Liau, Y.H. & Slomiany, A. Animal Glycoglycerolipids. Prog Lipid Res 26, 29-51 (1987).
38. Walker, A., et al. Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Sci Rep-Uk 7(2017).
39. Wang, Y., et al. Sex differences in transcriptomic profiles in aged kidney cells of renin lineage. Aging (Albany NY) 10, 606-621 (2018).
40. Sembach, F.E., et al. Impact of sex on diabetic nephropathy and the renal transcriptome in UNx db/db C57BLKS mice. Physiol Rep 7, e14333 (2019).
41. Braun, F., et al. Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging (Albany NY) 8, 441-457 (2016).
42. Reimand, J., et al. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 14, 482-517 (2019).
43. Carrero, J.J., Hecking, M., Chesnaye, N.C. & Jager, K.J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat Rev Nephrol 14, 151-164 (2018).
44. Zou, Z.N., Ohta, T., Miura, F. & Oki, S. ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data. Nucleic Acids Res 50, W175-W182 (2022).
45. Martovetsky, G., Tee, J.B. & Nigam, S.K. Hepatocyte nuclear factors 4alpha and 1alpha regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters. Mol Pharmacol 84, 808-823 (2013).
46. Chamouton, J. & Latruffe, N. PPARalpha/HNF4alpha interplay on diversified responsive elements. Relevance in the regulation of liver peroxisomal fatty acid catabolism. Curr Drug Metab 13, 1436-1453 (2012).
47. Harris, A.N., Castro, R.A., Lee, H.W., Verlander, J.W. & Weiner, I.D. Role of the renal androgen receptor in sex differences in ammonia metabolism. Am J Physiol-Renal 321, F629-F644 (2021).
48. O'Brown, Z.K., Van Nostrand, E.L., Higgins, J.P. & Kim, S.K. The Inflammatory Transcription Factors NFkappaB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney. PLoS Genet 11, e1005734 (2015).
49. Liu, M., et al. Androgen-STAT3 activation may contribute to gender disparity in human simply renal cysts. Int J Clin Exp Patho 6, 686-694 (2013).
50. Iida, K., et al. A Possible Role of Vitamin-D Receptors in Regulating Vitamin-D Activation in the Kidney. P Natl Acad Sci USA 92, 6112-6116 (1995).
51. Cozzolino, M. & Malindretos, P. The role of vitamin D receptor activation in chronic kidney disease. Hippokratia 14, 7-9 (2010).
52. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. Bmc Bioinformatics 9(2008).
53. Molenaar, M.R., et al. LION/web: a web-based ontology enrichment tool for lipidomic data analysis. Gigascience 8(2019).
54. Muralidharan, S., et al. A reference map of sphingolipids in murine tissues. Cell Rep 35(2021).
55. van der Bijl, P., Strous, G.J., LopesCardozo, M., ThomasOates, J. & van Meer, G. Synthesis of non-hydroxy-galactosylceramides and galactosyldiglycerides by hydroxy-ceramide galactosyltransferase. Biochem J 317, 589-597 (1996).
56. Hayashi, T., Hayashi, E., Fujimoto, M., Sprong, H. & Su, T.P. The Lifetime of UDP-galactose: Ceramide Galactosyltransferase Is Controlled by a Distinct Endoplasmic Reticulum-associated Degradation (ERAD) Regulated by Sigma-1 Receptor Chaperones. J Biol Chem 287, 43156-43169 (2012).
57. Lu, C.L., et al. Indoxyl-Sulfate-Induced Redox Imbalance in Chronic Kidney Disease. Antioxidants (Basel) 10(2021).
58. Strott, C.A. & Higashi, Y. Cholesterol sulfate in human physiology: what's it all about? J Lipid Res 44, 1268-1278 (2003).
59. Stofan, M. & Guo, G.L. Bile Acids and FXR: Novel Targets for Liver Diseases. Front Med-Lausanne 7(2020).
60. Rouillard, A.D., et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database-Oxford (2016).
61. Dayama, G., Priya, S., Niccum, D.E., Khoruts, A. & Blekhman, R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med 12(2020).
62. Ohsaka, F., et al. Gut commensals suppress interleukin-2 production through microRNA-200/BCL11B and microRNA-200/ETS-1 axes in lamina propria leukocytes of murine large intestine. Biochem Biophys Res Commun 534, 808-814 (2021).
63. Kolter, T. & Sandhoff, K. Lysosomal degradation of membrane lipids. Febs Lett 584, 1700-1712 (2010).
64. Johmura, Y., et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371, 265-+ (2021).
65. Babenko, N.A., Garkavenko, V.V., Storozhenko, G.V. & Timofiychuk, O.A. Role of acid sphingomyelinase in the age-dependent dysregulation of sphingolipids turnover in the tissues of rats. Gen Physiol Biophys 35, 195-205 (2016).
66. Parker, B.J., Wearsch, P.A., Veloo, A.C.M. & Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Front Immunol 11, 906 (2020).
67. Almsherqi, Z.A. Potential Role of Plasmalogens in the Modulation of Biomembrane Morphology. Front Cell Dev Biol 9(2021).
68. Tadano-Aritomi, K., et al. Kidney lipids in galactosylceramide synthase-deficient mice: absence of galactosylsulfatide and compensatory increase in more polar sulfoglycolipids. Journal of Lipid Research 41, 1237-1243 (2000).
69. Honke, K., et al. Paranodal junction formation and spermatogenesis require sulfoglycolipids. P Natl Acad Sci USA 99, 4227-4232 (2002).
70. Stormo, G.D. Modeling the specificity of protein-DNA interactions. Quant Biol 1, 115-130 (2013).
71. Thelen, A.M. & Zoncu, R. Emerging Roles for the Lysosome in Lipid Metabolism. Trends Cell Biol 27, 833-850 (2017).
72. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19, 55-71 (2021).
73. Tsugawa, H., Rai, A., Saito, K. & Nakabayashi, R. Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat Prod Rep 38, 1729-1759 (2021).
74. McDonald, J.G., et al. Introducing the Lipidomics Minimal Reporting Checklist. Nat Metab (2022).