Cells, viruses, and plasmids. HEK293 cells were used for the transfection of vectors expressing coronavirus proteins and the HIV-1 genome. The TZM-bl cell line was used as an indicator to measure HIV-1 infectivity [94–99]. Both cell lines were maintained as previously described [29, 30, 94]. Plasmids with the entire HIV-1 NL4-3 genome (pNL4-3) and pNL4-3Δvpu were obtained from the NIH AIDS Reagent Branch. Plasmids (all pcDNA3.1(+) based) expressing E proteins (SARS-CoV-2 E: accession #QIH45055, SARS-CoV E: accession # AAP13443, MERS-CoV E: accession #ATG84849, and HCoV-OC43 E: accession #ARA15423), and the HIV-1 Vpu protein (strain NL4-3) were synthesized by Synbio Technologies with C-terminal HA-tags and were sequenced to ensure that no deletions or other mutations were introduced during the synthesis. Expression of different coronavirus E proteins was confirmed by transfection with the Turbofect transfection reagent (ThermoFisher) followed by radiolabeling and immunoprecipitation analysis using a mouse monoclonal antibody directed against the HA-tag (Thermo-Fisher, #26183).
Immunofluorescence studies. To examine the intracellular localization of the SARS-CoV-2 E protein, COS-7 cells grown on 13 mm coverslips were transfected with either the empty pcDNA3.1(+) vector or one expressing the SARS-CoV-2 E protein using Turbofect transfection reagent (ThermoFisher). At 24 h post-transfection, cells were washed in PBS, fixed in 4% paraformaldehyde in PBS for 15 min, permeabilized with 0.2% Triton X-100 in PBS, and blocked for one hour with 22.5 mg/mL glycine and 1% BSA in PBST. The cultures were then incubated at 4C overnight with mouse monoclonal antibody against the HA-tag (Thermo Fisher, #26183) and rabbit polyclonal antibody against ERGIC53 (Proteintech, #13364-1-AP), a rabbit polyclonal antibody against either Golgin-97 (Abcam, #ab84340) or a rabbit monoclonal antibody against LAMP-1 (Cell Signaling Technologies #9091). The cells were washed in PBS and incubated with a secondary goat anti-rabbit antibody conjugated to AlexaFluorJ-488 (Invitrogen, A11008), and a chicken anti-mouse conjugated to AlexaFluorJ-594 (Invitrogen, A21201) for 1 h. Cells were counterstained with DAPI, and the coverslips were mounted on glass slides with a glycerol-containing mounting medium (Prolong™ Diamond Antifade Mountant; Invitrogen). To examine the intracellular localization of the SARS-CoV-2 E protein with the rough endoplasmic reticulum, cis-medial Golgi, or trans Golgi network (TGN), COS-7 cells were co-transfected with the plasmid expressing the E-HA protein and vectors expressing ERMoxGFP (Addgene #68072), mNeonGreen-Giantin (Addgene #98880), or TGN38-GFP (Addgene #128148). Cells were prepared as above and immunostained for E-HA using an anti-HA antibody. Coverslips were viewed with a Leica TCS SP8 Confocal Microscope with a 100X objective and a 2X digital zoom using the Leica Application Suite X (LASX) as previously described. Micrographs of sections (0.7 µM) from the center of the cell were photographed and a minimum of 100 cells were examined for each sample, and the results presented in the figures are representative of each sample.
Analysis of infectious HIV-1 production in the presence of E proteins. To analyze the virus restriction properties of the E proteins, HEK293 cells were transfected with either the empty pcDNA3.1(+) vector, a vector expressing gD (positive control for restriction), gD[ΔTMCT] (negative control for restriction), or E proteins and pNL4-3 [29, 30, 94]. At 48 h post-transfection (pt), the culture medium was collected, clarified by low-speed centrifugation, and the supernatants were analyzed for infectious virus by titration on TZM-bl cells (29, 30, 94–99). All assays were performed at least four times and analyzed for statistical significance using a two-tiered Student = s t-test with cells co-transfected with the empty pcDNA3.1(+) and pNL4-3 set at 100% infectivity.
Analysis of infectious HSV-1 produced in the presence of SARS-CoV-2 E protein. To determine if the SARS-CoV-2 E protein would restrict the replication of HSV-1, HEK293 cells were transfected with either the empty vector or with a vector expressing SARS-CoV-2 E protein. At 48 h, cells were infected with HSV-1 (0.01 pfu/cell) for 2 h. The cells were collected at 3, 24, and 48 h post-infection, and virus progeny production was determined by titration on Vero cells. Briefly, sterile skim milk was added to the culture, and the cells were scraped into the medium and briefly sonicated. Levels of infectious virus were determined by preparing a series of 10-fold dilutions of the culture supernatant followed by inoculation of Vero cells. The number of plaque-forming units was determined by standard procedures.
Biosynthesis and processing of viral proteins in the presence of E proteins. The biosynthesis and processing of HIV-1 proteins were examined in the presence of the coronavirus E proteins. HEK293 cells were co-transfected with empty pcDNA3.1(+) or the vector expressing E proteins and pNL4-3. At 30 h, the cells were washed and incubated in DMEM without methionine/cysteine for 2 h. The cells were washed and radiolabeled in DMEM containing 500 µCi 35S-Translabel (methionine and cysteine, Perkin-Elmer) for 16 h. Cell lysates were prepared, and the culture medium was processed as previously described [29, 30, 94]. HIV-1 proteins were immunoprecipitated using a cocktail of antibodies previously described and are referred to in the figures as Aanti-HIV@ antibodies [29, 30, 94]. The E proteins were immunoprecipitated using a monoclonal antibody directed against the HA-tag. Immunoprecipitates were collected by incubation with protein A-Sepharose beads overnight at 4C, the beads were washed with RIPA buffer, and the samples were resuspended in sample-reducing buffer. The samples were boiled, proteins separated by SDS-PAGE (10% or 12.5% gels), and proteins visualized using standard radiographic techniques.
Analysis of HIV-1 genome integration and viral RNA synthesis. To determine if the E proteins interfered with viral genome integration, we assessed the level of integration by amplification of Alu repeat/gag sequences using the previously described procedure [100]. The oligonucleotides used for detecting Alu-gag products were: a) Alu-gag forward oligonucleotide primer, MH535 (above); b) Alu-gag reverse oligonucleotide primer: SB704: 5'-TGCTGGGATTACAGGCGTGAG-3'. One µl of sample from the first round PCR and subject to real-time PCR with R/U5 primers (forward primer: M667-5’GGCTAACTAGGGAACCCACTGC-3’; reverse primer: AA55 − 5’CTGCTAGAGATTTTCCACACTGAC-3’) and probe (HIV FAM-5’- TAGTGTGTGCCCGTCTGTTGTGTGAC-3'TAM) [98] with each experiment, a standard curve of the amplicon being measured was run in duplicate ranging from 10 to 1 × 1011 copies plus a no-template control. Reactions contained 1× premix (Takara), 0.5µM forward primer, 0.5µM reverse primer, 0.25 µM probe primer, and 100–500 ng of template DNA and 1X RoxDyeII in a 20 µl volume. After initial incubations of 95° C for 30s, 40 cycles of amplification were carried out at 5 s at 95° C, and 34 s at 60° C. Reactions were analyzed using the ABI Prism 7500 sequence detection system (PE-Applied Biosystems, Foster City, California).
For analysis of the HIV-1 transcription, HEK293 cells were transfected with either the empty pcDNA3.1(+) vector or one expressing the SARS-CoV-2 E. At 24 h post-transfection, cells were infected with pseudotyped HIV-1ΔE/VSV-G at an MOI of 0.1. At 48 h post-transfection, cells were washed, pelleted and the RNA was extracted using the Invitrogen PureLink RNA Extraction kit. The RNA was treated with PureLink DNase I for 15 min at room temperature followed by heat inactivation. The RNA was reverse transcribed using the SuperScript IV RT kit and oligo(dT) 15 primer. The mixtures were treated with RNase H for 30 minutes at 37 C. Real-time quantitative PCR was performed using primers and procedures previously described: Tat forward, ES2440: 5’-GTCAGCCTAAAACTGCTTGTACCA-3’; Tat reverse, ES2445: 5’-GCCTGTCGGGTCCCCTC-3=; and Tat probe, MH603: 5’-(FAM)-CTCCTATGGCAGGAAGA-(TAMRA)-3’. A standard curve of the RNA amplicon was run ranging from 10 to 1x1011 copies. Reactions containing 1x premix (Takara), 0.5µM forward primer, 0.5µM reverse primer, 0.25µM probe, and 1x RoxDyeII in a 20µl volume. The thermal cycle is 95 C for 30 s, followed by 40 cycles of amplification for 5 s at 95C and 34 s at 60C. Reactions were analyzed using the ABI Prism 7500 sequence detection system (PE-Applied Biosystems, Foster City, California).
Analysis of the phosphorylation of eIF2-α and LC3-I lipidation. To determine if the expression of the E protein of SARS-CoV-2 resulted in phosphorylation of eIF2-α, HEK293 cells seeded in 6-well plates were either left untransfected or transfected with 1 µg of pUC19 or of a SARS-CoV-2 E-expressing plasmid. The cells were harvested at 48 h pt and equal amounts of proteins were analyzed by western blot for p-eIF2-α or total eIF2-α (both antibodies were obtained from Cell Signaling). Expression of E was detected using an HA-tag antibody (Invitrogen). β-actin was used as a loading control. To determine that phosphorylation of eIFαα-2α was not an artifact of over-expression, we also transfected cells with vectors expressing the Vpu of HIV-1 and the gD of HSV-1.
For analysis of LC3-I lipidation, cells were solubilized in triple-detergent buffer (50 mM Tris-HCl [pH 8], 150 mM NaCl, 0.1% sodium dodecyl sulfate, 1% Nonidet P-40, 0.5% sodium deoxycholate, 100 µg of phenylmethylsulfonyl fluoride per/ml) supplemented with phosphatase inhibitors (10 mM NaF, 10 mM β-glycerophosphate, 0.1 mM sodium orthovanadate) and protease inhibitor cocktail (Sigma) and briefly sonicated. The protein concentration was determined with the aid of the Bio-Rad protein assay (Bio-Rad Laboratories). Ten to forty micrograms of total proteins per sample were subjected to further analysis. The rabbit polyclonal antibody against LC3-B (Novus Biological) was used in a 1:5,000 dilution.
Analysis of caspase 3 activity by E proteins. To determine the levels of apoptosis, cells expressing the E proteins were analyzed using the colorimetric Enz-Chek Caspase-3 assay kit according to the manufacturer’s instructions (Molecular Probes, E-13183). HEK293 cells were either mock-transfected, transfected with pcDNA3.1(+), transfected with pcDNA3.1(+), and treated with 2 µM staurosporine, or transfected with the vectors expressing the E proteins. 48 hours pt, cells were harvested, lysed, and centrifuged to clear cellular debris. The supernatants were collected and reacted with Z-DEVD-AMC substrate in a microplate for one hour at 37C. Fluorescence was measured with the BioTek Synergy H1 microplate reader using excitation at 342 nm and emission at 441 nm. Samples were normalized to the total protein used in each sample. Caspase-3 activity in the pcDNA3.1(+) transfected sample was set as the baseline control.
Analysis of BST-2 down-regulation by various E proteins. We determined if the E proteins from four coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43) were capable of down-regulating cell surface bone marrow stromal antigen 2 (BST-2). HEK293 cells were co-transfected with either empty pcDNA3.1(+) vector and pcDNA3.1(+) expressing the human BST-2 protein, or pcDNA3.1(+) expressing each of the proteins described above and BST-2. Cells co-transfected with vectors expressing HIV-1 Vpu and BST-2 was used as a control for BST-2 down-regulation. At 48 h, the cells were stained with a mouse monoclonal antibody directed against BST-2 and subjected to flow cytometric analysis using a BD LSR II flow cytometer. Aliquots of cells from the same co-transfections were also analyzed for protein expression by immunoblots using antibodies directed against the HA-tag (E proteins and Vpu).
To analyze if the above proteins led to a steady state reduction in BST-2, HEK293 cells were co-transfected with vectors expressing either four E-HA proteins or HIV-1 Vpu-HA, and a vector expressing human BST-2. At 36 h post-transfection, cells were starved of methionine/cysteine for 2 h and radiolabeled in methionine/ cysteine-free media containing 500 µCi of 35S-methionine/cysteine for 16 h. Cells were washed, lysed in 1X RIPA buffer, and clarified by centrifugation. The lysates were transferred to new tubes and BST-2 (using an anti-BST-2 antibody), the E proteins, and Vpu (using an anti-HA antibody) or GAPDH (using an anti-GAPDH antibody; to equalize loading) immunoprecipitated. The immunoprecipitated proteins were washed in RIPA buffer and boiled in the sample-reducing buffer. The proteins were separated using SDS-PAGE and visualized by standard radiographic techniques.