Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH (2013) A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Mol BioSyst 9(6):1498-1510 https://doi.org/ 10.1039/c3mb70069k
Arnon AN (1967) Method of extraction of chlorophyll in the plants. Agron J 23(1):112-121
Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. In: Maret W (ed) Zinc biochemistry, Physiology, and homeostasis, Springer, Dordrecht, pp 85-127
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233-266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
Bandyopadhyay S, Ghosh K, Varadachari C (2014) Multimicronutrient slow-release fertilizer of zinc, iron, manganese, and copper. Int J Chem Chem Eng 2014:1-7. https://doi.org/10.1155/2014/327153
Barhoumi L, Oukarroum A, Taher LB, Smiri LS, Abdelmelek H, Dewez D (2015) Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba. Arch Environ Contam Toxicol 68(3):510-520. https://doi.org/10.1007/s00244-014-0092-9
Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276-287. https://doi.org/10.1016/0003-2697(71)90370-8
Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677-702. https://doi.org/10.1111/j.1469-8137.2007.01996.x
Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO 2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13(6):2443-2449. https://doi.org/10.1007/s11051-010-0135-8
Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94(4):490-495. https://doi.org/10.1007/s00128-015-1485-9
Chance B, Maehly AC (1955) [136] Assay of catalases and peroxidases. Methods Enzymol 2:764-775. https://doi.org/10.1016/s0076-6879(55)02300-8
Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15(4):316-328. https://doi.org/10.1016/j.numecd.2005.05.003.
Dickson S, Smith SE (1998) Evaluation of vesicular-arbuscular mycorrhizal colonisation by staining. In: Varma A (ed) Mycorrhiza manual, Springer-Verlag, Berlin, pp 77-83
Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012) Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture. Ind Biotechnol 8(6):344-357. https://doi.org/10.1089/ind.2012.0028
Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96(6):1455-1464. https://doi.org/10.1007/s00253-012-4506-1
Fróna D, Szenderák J, Harangi-Rákos M (2019) The challenge of feeding the world. Sustainability 11(20):5816. https://doi.org/10.3390/su11205816
Gao K, Li P, Watanabe T, Walter Helbling E (2008) Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of arthrospira (SPIRULINA) platensis (CYANOPHYTA). J Phycol 44(3):777-786. https://doi.org/10.1111/j.1529-8817.2008.00512.x
García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC genomics 16(1):1-17. https://doi.org/10.1186/s12864-015-1530-4
Ghabooli M, Khatabi B, Ahmadi FS, Sepehri M, Mirzaei M, Amirkhani A, Jorrin-Novo JV, Hosseini Salekdeh G (2013) Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteomics 94:289-301. https://doi.org/10.1016/j.jprot.2013.09.017.
Gómez-Sagasti MT, Marino D (2015) PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation?. Front Plant Sci 6:81. https://doi.org/10.3389/fpls.2015.00081
Hafeez B, Khanif, YM, Saleem M (2013) Role of zinc in plant nutrition-a review. J Exp Agric Int 374-391. https://doi.org/10.9734/ajea/2013/2746
Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei G (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Int J Phytorem 16(2):179-202. https://doi.org/10.1080/15226514.2013.773273
Hazarika DK, Das KK, Dubey LN, Phookan AK (2000) Effect of Vesicular Arbuscular Mycorrhizal (VAM) fungi and Rhizobium on growth and yield of green gram [Vigna radiata (L.)Wilczek]. J Mycol Plant Pathol 30(3):424-426
He X, Deng H, Hwang HM (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27(1):1-21. https://doi.org/10.1016/j.jfda.2018.12.002
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189-198. https://doi.org/10.1016/0003-9861(68)90654-1
Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248(1-2):43-59. https://doi.org/10.1023/a:1022371130939
Horwitz W, Senzel A, Reynolds H, Park, DL (1975) Official methods of analysis, 12th edn. Association of Official Analytical Chemists, Washington, DC
Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng 22(3):321-361. https://doi.org/10.1515/eces-2015-0018
Kabata-Pendias A (2010) Trace elements in soils and plants. CRC press, Florida
Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J, Von Wettstein D, Kogel KH, Schäfer P (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One 7(4):e35502. https://doi.org/10.1371/journal.pone.0035502
Kim SH, Baek JH, Song YR, Sin MJ, Lee IS (2009) Characterization and phytotoxicity of Zn, Zn oxide nanoparticles. J. Korean Soc. Environ Eng 31(12):1129-1134
Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water, Air, Soil Pollut 223(5):2799-2806. https://doi.org/10.1007/s11270-011-1067-3
Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1-3):613-621. https://doi.org/10.1016/j.jhazmat.2011.03.095.
Li JH, Liu XR, Zhang Y, Tian FF, Zhao GY, Yu QLY, Jiang FL, Liu Y (2012) Toxicity of nano zinc oxide to mitochondria. Toxicol Res 1(2):137-144. https://doi.org/10.1039/c2tx20016c
Li L, Zhu P, Wang X, Zhang Z (2020) Phytoremediation effect of Medicago sativa colonized by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil. BMC Biotechnol 20:1-14. https://doi.org/10.1186/s12896-020-00613-2
Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243-250. https://doi.org/10.1016/j.envpol.2007.01.016
Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580-5585. https://doi.org/10.1021/es800422x
Liu YANG, Jin-Li CAO, Zou YN, Qiang-Sheng WU, Kamil KUČA (2020) Piriformospora indica: a root endophytic fungus and its roles in plants. Not Bot Horti Agrobot Cluj-Napoca 48(1):1-13. https://doi.org/10.15835/nbha48111761
Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49(12):7109-7122. https://doi.org/10.1021/acs.est.5b00685
Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053-3061. https://doi.org/10.1016/j.scitotenv.2010.03.031
Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706. https://doi.org/10.3389/fmicb.2017.01706
Moghaddasi S, Fotovat A, Khoshgoftarmanesh AH, Karimzadeh F, Khazaei HR, Khorassani R (2017) Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol Environ Saf 144:543-551. https://doi.org/10.1016/j.ecoenv.2017.06.074
Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52(3):423-437. https://doi.org/10.1007/s00374-015-1073-5
Moreno-Olivas F, Gant VU, Johnson KL, Peralta-Videa JR, Gardea-Torresdey JL (2014) Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo. J Zhejiang Univ Sci A 15(8):618-623. https://doi.org/10.1631/jzus.a1400159
Motaghian HR, Hosseinpur AR (2013) Zinc desorption kinetics in wheat (Triticum Aestivum L.) rhizosphere in some sewage sludge amended soils. J Soil Sci Plant Nutr 13(3):664-678. http://dx.doi.org/10.4067/S0718-95162013005000053
Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132-138 https://doi.org/10.1039/c3mt00064h
Noori A, Donnelly T, Colbert J, Cai W, Newman LA, White JC (2020) Exposure of tomato (Lycopersicon esculentum) to silver nanoparticles and silver nitrate: physiological and molecular response. Int J Phytorem 22(1):40-51 https://doi.org/10.1080/15226514.2019.1634000
Nukuntornprakit OA, Chanjirakul K, van Doorn WG, Siriphanich J (2015) Chilling injury in pineapple fruit: Fatty acid composition and antioxidant metabolism. Postharvest Biol Technol 99:20-26. https://doi.org/10.1016/j.postharvbio.2014.07.010
Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158-161. https://doi.org/10.1016/s0007-1536(70)80110-3
Pikuła D, Stępień W (2007) Effect of soil pH on the uptake of heavy metals by plants. Fragm Agronom 2(94):227-237
Pryor WA, Stanley JP (1975) Suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids.Nonenzymic production of prostaglandin endoperoxides during autoxidation. J Org Chem 40(24):3615-3617. https://doi.org/10.1021/jo00912a038
Rahman KM, Zhang D (2018) Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 10(3):759. https://doi.org/10.3390/su10030759
Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ. Nanotechnol Monit Manag 9:76-84. https://doi.org/10.1016/j.enmm.2017.12.006
Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485-3498. https://doi.org/10.1021/jf104517j
Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS (2016) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23(3):2230-2248. https://doi.org/10.1007/s11356-015-5697-7
Saleem M, Meckes N, Pervaiz ZH, Traw MB (2017) Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress. Front. Microbiol 8:41. https://doi.org/10.3389/fmicb.2017.00041
Sampathkumar G, Ganeshkumar A (2003) Effect of AM fungi and Rhizobium on growth and nutrition of Vigna mungo L. and Vingna unguiculata. Mycorrhiza news 14(4):15-18
Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25-41. https://doi.org/10.1016/j.tplants.2017.09.003
Sepehri M, Khatabi B (2020) Combination of Siderophore-Producing Bacteria and Piriformospora indica Provides an Efficient Approach to Improve Cadmium Tolerance in Alfalfa. Microb Ecol 1-14. https://doi.org/10.1007/s00248-020-01629-z
Seshadri B, Bolan NS, Naidu R (2015) Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr 15(2):524-548. https://doi.org/10.4067/s0718-95162015005000043
Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66-78. https://doi.org/10.1016/j.apsoil.2016.05.009
Singhal U, Prasad R, Varma A (2017) Piriformospora indica (Serendipita indica): The Novel Symbiont. In: Mycorrhiza-Function, Diversity, State of the Art, Springer, Cham, pp 349-364
Strehmel N, Mönchgesang S, Herklotz S, Krüger S, Ziegler J, Scheel D (2016) Piriformospora indica stimulates root metabolism of Arabidopsis thaliana. Int J Mol Sci 17(7):1091. https://doi.org/10.3390/ijms17071091
Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167(12):1009-1017. https://doi.org/10.1016/j.jplph.2010.02.013
Talebi MB, Bahar M, Saeidi G, Mengoni A, Bazzicalupo M (2008) Diversity of Sinorhizobium strains nodulating Medicago sativa from different Iranian regions. FEMS Microbiol Lett 288(1):40-46. https://doi.org/10.1111/j.1574-6968.2008.01329.x
Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chem Ecol 28(3):281-291. https://doi.org/10.1080/02757540.2011.644789
Vankova R, Landa P, Podlipna R, Dobrev PI, Prerostova S, Langhansova L, Gaudinova A, Motkova K, Knirsch V, Vanek T (2017) ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Sci Total Environ 593:535-542. https://doi.org/10.1016/j.scitotenv.2017.03.160
Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27(2):177-192. https://doi.org/10.1016/s1002-0160(17)60309-6
Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013) Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 47(23):13822-13830. https://doi.org/10.1021/es403466p
Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243. https://doi.org/10.3389/fpls.2015.01243
Wang Z, Shan XQ, Zhang S (2002) Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere 46(8):1163-1171. https://doi.org/10.1016/s0045-6535(01)00206-5