1 Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337-342, doi:10.1038/nature10452 (2011).
2 Garibaldi, L. A. et al. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol Evol 32, 68-80, doi:10.1016/j.tree.2016.10.001 (2017).
3 Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 362, eaav0294, doi:10.1126/science.aav0294 (2018).
4 Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519-525, doi:10.1038/s41586-018-0594-0 (2018).
5 Fuglie, K. O., Wang, S. L. & Ball, V. E. Productivity growth in agriculture: an international perspective. (CABI, 2012).
6 Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970-2005. P Natl Acad Sci USA 106, 20675-20680, doi:10.1073/pnas.0812540106 (2009).
7 Zhang, W., Ricketts, T. H., Kremen, C., Carney, K. & Swinton, S. M. Ecosystem services and dis-services to agriculture. Ecol Econ 64, 253-260, doi:10.1016/j.ecolecon.2007.02.024 (2007).
8 Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision. (12-03, Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations, 2012).
9 Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. P Natl Acad Sci USA 108, 20260-20264, doi:10.1073/pnas.1116437108 (2011).
10 Cassman, K. G. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. P Natl Acad Sci USA 96, 5952-5959, doi:10.1073/pnas.96.11.5952 (1999).
11 Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. Agricultural intensification and ecosystem properties. Science 277, 504-509, doi:10.1126/science.277.5325.504 (1997).
12 Fraser, E. et al. Biotechnology or organic? Extensive or intensive? Global or local? A critical review of potential pathways to resolve the global food crisis. Trends in Food Science & Technology 48, 78-87, doi:10.1016/j.tifs.2015.11.006 (2016).
13 Poore, J. & Nemecek, T. Reducing food's environmental impacts through producers and consumers. Science 360, 987-992, doi:10.1126/science.aaq0216 (2018).
14 Clark, M., Hill, J. & Tilman, D. The diet, health, and environment trilemma. Annual Review of Environment and Resources, Vol 43 43, 109-134, doi:10.1146/annurev-environ-102017-025957 (2018).
15 Gebbers, R. & Adamchuk, V. I. Precision agriculture and food security. Science 327, 828-831, doi:10.1126/science.1183899 (2010).
16 Stevens, C. J. Nitrogen in the environment. 363, 578-580, doi:10.1126/science.aav8215 %J Science (2019).
17 Vitousek, P. M. et al. Nutrient imbalances in agricultural development. Science 324, 1519-1520, doi:10.1126/science.1170261 (2009).
18 Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363-366, doi:10.1038/nature25785 (2018).
19 Fischer, J. et al. Should agricultural policies encourage land sparing or wildlife-friendly farming? Front Ecol Environ 6, 382-387, doi:10.1890/070019 (2008).
20 Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550-555, doi:10.1126/science.1106049 (2005).
21 Ewers, R. M., Scharlemann, J. P. W., Balmford, A. & Green, R. E. Do increases in agricultural yield spare land for nature? Global Change Biol 15, 1716-1726, doi:10.1111/j.1365-2486.2009.01849.x (2009).
22 Lark, T. J., Spawn, S. A., Bougie, M., & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nature Commun 11, 1-11 (2020).
23 Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat Commun 4, doi:10.1038/ncomms3918 (2013).
24 Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat Commun 3, doi:10.1038/ncomms2296 (2012).
25 Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916-919, doi:10.1126/science.aat3466 (2018).
26 Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Env Resour 34, 97-125, doi:10.1146/annurev.environ.032108.105046 (2009).
27 McCann, K. S. et al. Ecosystem entanglement and the propagation of nutrient-driven instability. Ecology Letters In press (2020).
28 Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876-1879, doi:10.1126/science.1094678 (2004).
29 Beketov, M. A., Kefford, B. J., Schafer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. P Natl Acad Sci USA 110, 11039-11043, doi:10.1073/pnas.1305618110 (2013).
30 Alston, J. M. & Pardey, P. G. Agriculture in the global economy. The Journal of economic perspectives 28, 121-146, doi:10.1257/jep.28.1.121 (2014).
31 Costanza, R. et al. The value of the world's ecosystem services and natural capital. Nature 387, 253-260, doi:10.1038/387253a0 (1997).
32 Shortall, O. K. (2013). “Marginal land” for energy crops: Exploring definitions and embedded assumptions. Energy Policy, 62, 19-27.
33 Salzman, J., Bennett, G., Carroll, N., Goldstein, A. & Jenkins, M. The global status and trends of Payments for Ecosystem Services. Nat Sustain 1, 136-144, doi:10.1038/s41893-018-0033-0 (2018).
34 United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. (2015). <https://undocs.org/en/A/RES/70/1>.
35 Hungate, B. A. et al. The economic value of grassland species for carbon storage. Science Advances 3, e1601880, doi:10.1126/sciadv.1601880 (2017).
36 Hayami, Y. & Ruttan, V. W. Agricultural development: an international perspective. Rev. and expanded ed. edn, (Johns Hopkins University Press, 1985).
37 Alston, J. M., Babcock, B. A. & Pardey, P. G. The Shifting Patterns of Agricultural Production and Productivity Worldwide. (Iowa State University Digital Repository, 2010).
38 Perfecto, I., Vandermeer, J. H. & Wright, A. L. Nature's matrix: linking agriculture, conservation and food sovereignty. (Routledge, 2009).
39 Altieri, M. A. & Rosset, P. Agroecology and the conversion of large‐scale conventional systems to sustainable management. International Journal of environmental studies 50, 165-185 (1996).
40 Cochrane, W.W. 1993. The Development of American Agriculture: A Historical Analysis, 2nd edition. Minneapolis, MN: University of Minnesota Press.
41 Clapp, J. & Isakson, S. R. Risky returns: The implications of financialization in the food system. Development and Change 49, 437-460 (2018).
42 Pimentel, D. & Pimentel, M. Food, energy, and society. 3rd edn, (CRC Press, 2007).
43 Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proceedings of the National Academy of Sciences 115, 2335-2340, doi:10.1073/pnas.1717072115 (2018).
44 Morefield, P. E., LeDuc, S. D., Clark, C. M., & Iovanna, R. (2016). Grasslands, wetlands, and agriculture: the fate of land expiring from the Conservation Reserve Program in the Midwestern United States. Environmental Research Letters, 11(9), 094005
45 Pimentel, D. et al. Food production and the energy crisis. Science 182, 443-449, doi:10.1126/science.182.4111.443 (1973).
46 Gelfand, I. et al. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493, 514-517, doi:10.1038/nature11811 (2013).
47 Brueckner, J. K. Urban sprawl: diagnosis and remedies. Int Regional Sci Rev 23, 160-171, doi:10.1177/016001700761012710 (2000).
48 Young, A. Is there really spare land? A critique of estimates of available cultivable land in developing countries. Environment, Development and Sustainability 1, 3-18, doi:10.1023/a:1010055012699 (1999).
49 Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. P Natl Acad Sci USA 108, 3465-3472, doi:10.1073/pnas.1100480108 (2011).
50 Wright, C. K. & Wimberly, M. C. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. P Natl Acad Sci USA 110, 4134-4139, doi:10.1073/pnas.1215404110 (2013).
51 Gellrich, M., Baur, P., Koch, B. & Zimmermann, N. E. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: a spatially explicit economic analysis. Agriculture, Ecosystems & Environment 118, 93-108, doi:10.1016/j.agee.2006.05.001 (2007).
52 Prishchepov, A. V., Müller, D., Dubinin, M., Baumann, M. & Radeloff, V. C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land use policy 30, 873-884, doi:10.1016/j.landusepol.2012.06.011 (2013).
53 Samson, F. & Knopf, F. Prairie conservation in North-America. Bioscience 44, 418-421, doi:10.2307/1312365 (1994).
54 Canadian Government. Pan-Canadian framework on clean growth and climate change. (Environment and Climate Change Canada, 2016).
55 Daily, G. C. et al. Ecosystem services in decision making: time to deliver. Front Ecol Environ 7, 21-28 (2009).
56 Smith, P. et al. Greenhouse gas mitigation in agriculture. Philosophical transactions. Biological sciences 363, 789-813, doi:10.1098/rstb.2007.2184 (2007).
57 Paustian, K. et al. Climate-smart soils. Nature (London) 532, 49-57, doi:10.1038/nature17174 (2016).
58 Minnesota, C. F. F. M. U. FINPACK User's Manual. (Lulu.com, 2012).
59 Gramig, B. M., & Widmar, N. J. Farmer preferences for agricultural soil carbon sequestration schemes. Applied Economic Perspectives and Policy 40 502-521 (2018)
60 USDA. "USDA Announces Support for Farmers Impacted by Unjustified Retaliation and Trade Disruption." Press Releases | USDA (2019).
61 Government of Canada. Agricultural programs and services.
Agricultural programs and services - Agriculture and Agri-Food Canada (AAFC) (2019).
62 World Trade Organization. Domestic support: amber, blue, and green boxes. https://www.wto.org/ (2020).
63 Prokopy, L.S. et al. Adoption of agricultural conservation practices in the United States: evidence from 35 years of quantitative literature." Journal of Soil and Water Conservation 74, 520-534, (2019).
64 Zheng, H. et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proceedings of the National Academy of Sciences 110, 16681-16686, doi:10.1073/pnas.1312324110 (2013).
65 Campbell, B. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol Soc 22, 8, doi:10.5751/ES-09595-220408 (2017).
66 World Economic Forum. The global risks report 2018, 13th edition. (Geneva, Switzerland, 2018).