Baker DN, Foster JC, Erickson PJ, et al. (2014), Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations, Geophys Res Lett, DOI: 10.1002/2013GL058942.
Blake JB, et al. (2013), Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft, Space Sci Rev, doi:10.1007/s11214-013-9991-8.
Cattell C, Wygant JR, Goetz K, et al. (2008), Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts, Geophys Res Lett,35, L01105,doi:10.1029/2007GL032009.
Foster JC, and Rosenberg TJ (1976), Electron precipitation and VLF emissions associated with cyclotron resonance interactions near the plasmapause J Geophys Res, 81(13), 2183–2192, doi:10.1029/JA081i013p02183.
Foster JC, Rosenberg TJ, and Lanzerotti LJ (1976), Magnetospheric conditions at the time of enhanced wave-particle interactions near the plasmapause, J Geophys Res, 81(13), 2175-2182, doi: 10.1029/JA081i013p02175.
Foster JC, Erickson PJ, Baker DN, et al (2014), Prompt energization of relativistic and highly relativistic electrons during substorm intervals: Van Allen Probes observations, Geophys Res Lett, 41, 20-25, DOI: 10.1002/2013GL058438.
Foster JC, Erickson PJ, Omura Y, et al. (2017) Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus. J Geophys Res Space Phys. https://doi.org/10.1002/2016JA023429
Funsten HB, Skoug RM, Guthrie AA, et al. (2013), Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the Radiation Belt Storm Probes Mission, Space Sci Rev., 179, 423–484, doi:10.1007/s11214-013-9968-7.
Hanzelka M, Santolík O, Omura, et al. (2020), A model of the subpacket structure of rising tone chorus emissions, J Geophys Res Space Phys,125, e2020JA028094. https://doi.org/10.1029/2020JA028094.
Hiraga R, and Omura Y (2020), Acceleration mechanism of radiation belt electrons through interaction with multi-subpacket chorus waves. Earth Planets Space 72, 21. https://doi.org/10.1186/s40623-020-1134-3
Hsieh YK, and Omura Y (2018). Nonlinear damping of oblique whistler mode waves via Landau resonance. J Geophys Res Space Phys, 123, 7462–7472. https://doi.org/10.1029/2018JA025848
Jaynes AN, Baker DN, Singer HJ, et al. (2015). Source and seed populations for relativistic electrons: Their roles in radiation belt changes. J Geophys Res Space Phys, 120, 7240–7254., https://doi.org/10.1002/2015JA021234
Kletzing CA, et al, (2012), The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) on RBSP, Space Sci Rev, doi: 10.1007/s11214-013-9993-6.
Mauk BH, et al. (2012), Science objectives and rationale for the Radiation Belt Storm Probes mission, Space Sci Rev, doi:10.1007/s11214-012-9908-y.
Omura Y, Nunn D (2011) Triggering process of whistler mode chorus emissions in the magnetosphere. J Geophys Res 116:A05205. https://doi.org/10.1029/2010JA016280
Omura Y, Katoh Y, Summers D (2008) Theory and simulation of the generation of whistler-mode chorus. J Geophys Res 113:A04223. https://doi.org/10.1029/2007JA012622
Omura Y, Hikishima M, Katoh Y, et al. (2009) Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere. J Geophys Res 114:A07217. https://doi.org/10.1029/2009JA014206
Omura Y, Hsieh YK, Foster JC, et al. (2019) Cyclotron acceleration of relativistic electrons through landau resonance with obliquely propagating whistler mode chorus emissions. J Geophys Res Space Phys 124:2795–2810. https://doi.org/10.1029/2018JA026374
Reeves GD, Spence HE, Henderson MG, et al. (2013), Electron acceleration in the heart of the Van Allen radiation belts, Sciencexpress, doi:10.1126/science.1237743.
Santolik, O, Gurnett, Pickett JS, et al. (2003), Spatio-temporal structure of storm-time chorus, J Geophys Res, 108 (A7), p. 1278, 10.1029/2002JA009791
Santolik, O, Gurnett, Pickett JS, et al. (2004), A microscopic and nanoscopic view of storm-time chorus on 31 March 2001, Geophys Res Lett, 31 (2004), p. L02801, 10.1029/2003GL018757
Santolik, O, Gurnett DA, Picket JS, et al. (2009), Oblique propagation of whistler mode waves in the chorus source region, J. Geophys. Res., 114, A F03, doi:10.1029/2009JA014586.
Santolík O, Kletzing CA, Kurth WS, et al., (2014), Fine structure of large-amplitude chorus wave packets, Geophys Res Lett,41,293–299,doi:10.1002/2013GL058889.
Shoji M, Omura Y (2013) Triggering process of electromagnetic ion cyclotron rising tone emissions in the inner magnetosphere. J Geophys Res Space Phys 118:5553–5561. https://doi.org/10.1002/jgra.50523
Thorne RM, Li W, Ni B, et al., (2013), Rapid local acceleration of relativistic radiation belt electrons by magnetospheric chorus, Nature, 504, 7480, 411–414, doi: 0.1038/nature12889.
Tsurutani BT, Chen R, Gao X, et al. (2020), Lower‐band “monochromatic” chorus riser subelement/wave packet observations, J Geophys Res Space Phys,125, e2020JA028090, https://doi.org/10.1029/2020JA028090.
Zhang XJ, Mourenas D, Artemyev AV, et al., (2020). Rapid frequency variations within intense chorus wave packets. Geophys Res Lett, 47, e2020GL088853. https://doi.org/10.1029/2020GL088853