COVID-19 pandemic, a novel coronavirus disease is caused by severe acute respiratory syndrome corona virus, SARS-CoV-2. It was first reported in Wuhan, China and has now expanded to more than 190 countries across the world. Till date, there is no specific medication available to prevent or target SARS CoV-2 infection. Very recently, the crystal structure of COVID- 19 main protease (Mpro) was revealed by Liu et al. (2020). SARS-CoV-2 main protease (Mpro) is a key enzyme that plays a crucial role in viral replication and transcription. Thus, Mpro could be a promising target to inhibit SARS-CoV-2 infection. Natural compounds due to their structural diversity and safety are considered as an excellent source of antiviral drugs. In this study, we selected Herbacetin, Rhoifolin, Pectolinarin, Apigenin, Luteolin, Amentoflavone, Daidzein, Puerarin, Epigallocatechin, Gallocatechin gallate, Resveratrol, Maslinic acid, Piperine and Ganomycin B to target the SARS-CoV-2 main protease (Mpro) using in silico tools. These compounds were examined based on ADME, drug likeness, docking studies, MD simulations using CABS-flex 2.0, and prediction of major toxicity parameters (hepatotoxicity & cytotoxicity) to check the safety aspects of the selected compounds. We also investigated the similarity of these compounds, if any, with FDA approved drugs using Swiss similarity. The docking results were found in the order of Amentoflavone (-9.13 kcal/mol), Ritonavir (-8.52 kcal/mol), Lopinavir (-8.5 kcal/mol), Puerarin (-7.97 kcal/mol), Maslinic acid (-7.97 kcal/mol), Piperine (-7.65 kcal/mol), Gallocatechin gallate (-7.59 kcal/mol), Luteolin (-7.58 kcal/mol), Apigenin (-7.42 kcal/mol), Resveratrol (-7.41 kcal/mol), Herbacetin (-7.4 kcal/mol), Daidzein (-7.32 kcal/mol), Rhoifolin (-6.71 kcal/mol), Ganomycin B (-6.46 kcal/mol), Epigallocatechin (-6.13 kcal/mol), and Pectolinarin (-5.88 kcal/mol). Among these selected natural compounds, Amentoflavone and Puerarin were the two top leads which showed the lowest binding energies. Interestingly, Amentoflavone showed highest binding affinity among all the selected compounds. Our promising findings based on in-silico studies warrants further clinical trial in order to use these compounds as potential inhibitors of SARS-CoV-2 protease.