Akiguchi, I., Pallàs, M., Budka, H., et al., 2017. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions. Neuropathology 37 (4), 293-305.
Bhakta, H.K., Park, C.H., Yokozawa, T., Min, B., Jung, H.A., Choi, J.S., 2016. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-d-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors. Arch. Pharm. Res. 39(6), 794-805.
Butterfield, D.A., Poon, H.F., 2005. The senescence-accelerated prone mouse (SAMP8): A model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Exp. Gerontol. 40(10), 774-783.
Caccamo, A., Branca, C., Piras, I.S., et al., 2017. Necroptosis activation in Alzheimer's disease. Nat. Neurosci. 20, 1236-1246.
Cai, Z., Jitkaew, S., Zhao, J., et al., 2014. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16(1), 55-65.
Canudas, A.M., Gutierrez-Cuesta, J., Rodriguez, M.I., et al., 2005. Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM). Mech. Ageing Dev. 126(12), 1300-1304.
Chen, G.H., Wang, Y.J., Wang, X.M., Zhou, J.N., 2004. Accelerated senescence prone mouse-8 shows early onset of deficits in spatial learning and memory in the radial six-arm water maze. Physiol. Behav. 82(5), 883-890.
Chen, X., Li, W., Ren, J., et al., 2014. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24(1), 105-121.
Cheng, X., Zhou, W., Zhang, Y., 2014. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer's disease animal model. Ageing Res. Rev. 13, 13-37.
Christofferson, D.E., Yuan, J., 2010. Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22(2), 263-268.
Crous-Bou, M., Minguillon, C., Gramunt, N., et al. 2017. Alzheimer's disease prevention: from risk factors to early intervention. Alzheimers Res. Ther. 9, 71.
Deepa, S.S., Unnikrishnan, A., Matyi, S., Hadad, N., Richardson, A., 2018. Necroptosis increases with age and is reduced by dietary restriction. Aging Cell 17(4), e12770.
Diering, G.H., Huganir, R.L., 2018. The AMPA receptor Code of synaptic plasticity. Neuron 100(2), 314-329.
Dong, W., Wang, F., Chen, Y., et al., 2015. Electroacupuncture reduces Aβ production and BACE1 expression in SAMP8 mice. Front. Aging Neurosci. 7, 148.
Flood, J.F., and Morley, J.E. 1992. Early onset of age-related impairment of aversive and appetitive learning in the SAM-P/8 mouse. J Gerontol 47, B52-9.
Guerreiro, R., Bras, J., 2015. The age factor in Alzheimer's disease. Genome Med. 7, 106.
Harris, K.P., Littleton, J.T., 2015. Transmission, development, and plasticity of synapses. Genetics 201(2), 345-375.
Huang, J., Wu, D., Wang, J., et al., 2014. Effects of Panax notoginseng saponin on α, β, and γ secretase involved in Aβ deposition in SAMP8 mice. Neuroreport 25(2), 89-93.
Katayama, S., Sugiyama, H., Kushimoto, S., Uchiyama, Y., Hirano, M., Nakamura, S., 2016. Effects of sesaminol feeding on brain Abeta accumulation in a senescence-accelerated mouse-prone 8. J. Agric. Food Chem. 64(24), 4908-4913.
Kitaoka, K., Shimizu, N., Ono, K., et al., 2013. The retinoic acid receptor agonist Am80 increases hippocampal ADAM10 in aged SAMP8 mice. Neuropharmacology 72, 58-65.
Kwon, S.E., Chapman, E.R., 2011. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 70(5), 847-54.
Lammich, S., Kojro, E., Postina, R., et al., 1999. Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. U. S. A. 96(7), 3922-3927.
Lardenoije, R., Pishva, E., Lunnon, K., van den Hove, D.L., 2018. Neuroepigenetics of Aging and Age-Related Neurodegenerative Disorders. Prog. Mol. Biol. Transl. Sci. 158, 49-82.
Lee, H.K., Takamiya, K., Han, J.S., et al., 2003. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112(5), 631-643.
Li, D., Meng, L., Xu, T., et al., 2017. RIPK1-RIPK3-MLKL-dependent necrosis promotes the aging of mouse male reproductive system. eLife 6, e27692.
Li, G., Cheng, H., Zhang, X., et al., 2013. Hippocampal neuron loss is correlated with cognitive deficits in SAMP8 mice. Neurol. Sci. 34(6), 963-969.
Li, M., Wang, W., Wang, P., Yang, K., Sun, H., Wang, X., 2010. The pharmacological effects of morroniside and loganin isolated from Liuweidihuang Wan, on MC3T3-E1 cells. Molecules 15(10), 7403-7414.
Lin, N., Pan, X., Chen, A., et al., 2014. Tripchlorolide improves age-associated cognitive deficits by reversing hippocampal synaptic plasticity impairment and NMDA receptor dysfunction in SAMP8 mice. Behav. Brain Res. 258, 8-18.
Ma, D., Luo, Y., Huang, R., et al., 2019. Cornel iridoid glycoside suppresses tau hyperphosphorylation and aggregation in a mouse model of tauopathy through increasing activity of PP2A. Curr. Alzheimer Res. 16(14), 1316 - 1331.
Ma, D., Wang, N., Fan, X., et al. 2018. Protective effects of cornel iridoid glycoside in rats after traumatic brain injury. Neurochem. Res. 43(4), 959-971.
Ma, D., Zhu, Y., Li, Y., et al. 2016. Beneficial effects of cornel iridoid glycoside on behavioral impairment and senescence status in SAMP8 mice at different ages. Behav. Brain Res. 312, 20-29.
Ma, D., Luo, Y., Huang, R., et al. 2020. Cornel iridoid glycoside suppresses hyperactivity phenotype in rTg4510 mice through reducing tau pathology and improving synaptic dysfunction. Current Medical Science 40, 1031-1039.
Marcello, E., Borroni, B., Pelucchi, S., Gardoni, F., Di Luca, M., 2017. ADAM10 as a therapeutic target for brain diseases: from developmental disorders to Alzheimer's disease. Expert Opin. Ther. Targets 21(11), 1017-1026.
Ofengeim, D., Mazzitelli, S., Ito, Y., et al., 2017. RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A. 114, E8788-E8797.
Rajmohan, R., Reddy, P.H., 2017. Amyloid-Beta and phosphorylated Tau accumulations cause abnormalities at synapses of Alzheimer's disease neurons. J. Alzheimers Dis. 57(4), 975-999.
Reisel, D., Bannerman, D.M., Schmitt, W.B., et al., 2002. Spatial memory dissociations in mice lacking GluR1. Nat. Neurosci. 5, 868-873.
Spires-Jones, T.L., Hyman, B.T., 2014. The intersection of amyloid beta and tau at synapses in Alzheimer's disease. Neuron 82(4), 756-771.
Takeda, T., 1999. Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol. Aging 20(2), 105-110.
Wang, W., Sun, F.L., An, Y., et al., 2009. Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur. J. Pharmacol. 613(1-3), 19-23.
Ya, B.L., Li, C.Y., Zhang, L., Wang, W., Li, L., 2010. Cornel iridoid glycoside inhibits inflammation and apoptosis in brains of rats with focal cerebral ischemia. Neurochem. Res. 35, 773-781.
Yao, R.Q., Zhang, L., Wang, W., Li, L., 2009. Cornel iridoid glycoside promotes neurogenesis and angiogenesis and improves neurological function after focal cerebral ischemia in rats. Brain Res. Bull. 79(1), 69-76.
Yokozawa, T., Kang, K.S., Park, C.H., et al., 2010. Bioactive constituents of Corni Fructus: The therapeutic use of morroniside, loganin, and 7-O-galloyl-D-sedoheptulose as renoprotective agents in type 2 diabetes. Drug Discov. Ther. 4(4), 223-234.
Zelic, M., Roderick, J.E., O Donnell, J.A., et al., 2018. RIP kinase 1-dependent endothelial necroptosis underlies system ic inflammatory response syndrome. J. Clin. Invest. 128(5), 2064-2075.
Zhao, L.H., Ding, Y.X., Zhang, L., Li, L., 2010. Cornel iridoid glycoside improves memory ability and promotes neuronal survival in fimbria-fornix transected rats. Eur. J. Pharmacol. 647(1-3), 68-74.