Humulones and iso-humulones are potent natural antioxidants found in beer. In this study, density functional theory (DFT) method was applied for elucidating the structure-antioxidant activity relationship and molecular mechanism of antioxidant activity of eight bioactive humulones previously identified in different beer samples: isoxanthohumol, ( R )- and ( S )-adhumulone, cis - and trans -iso-adhumulone, cis - and trans -iso-n-humulone, and desdimetyhyl-octahydro-iso-cohumulone. The calculated bond dissociation enthalpies (BDEs) suggest that desdimethyl-octahydro-iso-cohumulone was the most potent compound with BDEs 5.1 and 23.9 kJ/mol lower compared to the values for resveratrol in gas phase and water, respectively. The enolic –OH is the most reactive site for hydrogen atom transfer (HAT). The presence of β-keto group with respect to enolic –OH diminishes the HAT potency via the formation of a strong intramolecular hydrogen bond. Another common antioxidant mechanism, single electron transfer followed by proton transfer (SET-PT), is only feasible for isoxanthohumol. The results of this study indicate a strong correlation between the increased antioxidant activity of beer products and the higher content of reduced iso-α-acids.