Background: Population-level estimates of prevalence of anti-SARS-CoV-2 antibody positivity (seroprevalence) is a crucial epidemiological indicator for tracking the Covid-19 epidemic. Such data are in short supply, both internationally and in South Africa. The South African blood services (the South African National Blood Service, SANBS and the Western Cape Blood Service, WCBS) are coordinating a nationally representative survey of blood donors, which it is hoped can become a cost-effective surveillance method with validity for community-level seroprevalence estimation.
Methods: Leveraging existing arrangements, SANBS human research ethics committee permission was obtained to test blood donations collected on predefined days (7th, 10th ,12th ,15th ,20th ,23th and 25th January) for anti-SARS-CoV-2 antibodies, using the Roche Elecsys Anti-SARS-CoV-2 assay on the cobas e411 platform currently available in the blood services’ donation testing laboratories. Using standard methods, prevalence analysis was done by province, age and race, allowing age to be regarded as either a continuous or categorical variable. Testing was performed in the Eastern Cape (EC), Free State (FS), KwaZulu Natal (ZN) and Northern Cape (NC) provinces.
Results: We report on data from 4858 donors - 1457 in EC; 463 in NC; 831 in FS and 2107 in ZN. Prevalence varied substantially across race groups and between provinces, with seroprevalence among Black donors consistently several times higher than among White donors, and the other main population groups (Coloured and Asian) not consistently represented in all provinces. There is no clear evidence that seroprevalence among donors varies by age. Weighted net estimates of prevalence (in the core age range 15-69) by province (compared with official clinically-confirmed COVID-19 case rates in mid-January 2021) are: EC-63%(2.8%), NC-32%(2.2%), FS-46%(2.4%), and ZN-52%(2.4%).
Conclusions: Our study demonstrates substantial differences in dissemination of SARS-CoV-2 infection between different race groups, most likely explained by historically based differences in socio-economic status and housing conditions. As has been seen in other areas, even such high seroprevalence does not guarantee population-level immunity against new outbreaks – probably due to viral evolution and waning of antibody neutralization. Despite its limitations, notably a ‘healthy donor’ effect, it seems plausible that these estimates are reasonably generalisable to actual population level anti-SARS-CoV-2 seroprevalence, but should be further verified.