Adams KL, Cronn R, Percifield R, et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci. 2003;100(8):4649-54. https://doi.org/10.1073/pnas.0630618100.
Akhunova AR, Matniyazov RT, Liang H, et al. Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC genomics. 2010;11(1):505. https://doi.org/10.1186/1471-2164-11-505.
Ali I, Shakeel A, Saeed A, et al. Combining ability analysis and heterotic studies for within-boll yield components and fibre quality in cotton. J Anim Plant Sci. 2016;26(1):156-62.
Anssour S, Krügel T, Sharbel T, et al. Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Ann Bot. 2009;103(8):1207-17. https://doi.org/10.1093/aob/mcp058.
Auger B, Baron C, Lucas M-O, et al. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta. 2009;230(6):1167. https://doi.org/10.1007/s00425-009-1017-0.
Bajpai PK, Reichelt M, Augustine R, et al. Heterotic patterns of primary and secondary metabolites in the oilseed crop Brassica juncea. Heredity. 2019;123(3):318-36. https://doi.org/10.1038/s41437-019-0213-3.
Bingham E, Groose R, Woodfield D, et al. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci. 1994;34(4):823-9. https://doi.org/10.2135/cropsci1994.0011183X003400040001x.
Birchler JA, Auger DL, Riddle NC. In search of the molecular basis of heterosis. Plant Cell. 2003;15(10):2236-9. https://doi.org/10.1105/tpc.151030.
Bottley A, Xia G, Koebner R. Homoeologous gene silencing in hexaploid wheat. Plant J. 2006;47(6):897-906. https://doi.org/10.1111/j.1365-313x.2006.02841.x.
Buggs RJ, Elliott NM, Zhang L, et al. Tissue‐specific silencing of homoeologs in natural populations of the recent allopolyploid Tragopogon mirus. New Phytol. 2010;186(1):175-83. https://doi.org/10.1111/j.1469-8137.2010.03205.x.
Chang PL, Dilkes BP, McMahon M, et al. Homoeolog-specific retention and use in allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome biol. 2010;11(12):R125. https://doi.org/10.1186/gb-2010-11-12-r125.
Chaudhary B, Flagel L, Stupar RM, et al. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics. 2009;182(2):503-17. https://doi.org/10.1534/genetics.109.102608.
Chelaifa H, Monnier A, Ainouche M. Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina× townsendii and Spartina anglica (Poaceae). New Phytol. 2010;186(1):161-74. https://doi.org/10.1111/j.1469-8137.2010.03179.x.
Chen ZJ. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol. 2007;58:377-406. https://doi.org/10.1146/annurev.arplant.58.032806.103835.
De Smet R, Adams KL, Vandepoele K, et al. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci. 2013;110(8):2898-903. https://doi.org/10.1073/pnas.1300127110.
Doyle JJ, Flagel LE, Paterson AH, et al. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet. 2008;42:443-61. https://doi.org/10.1146/annurev.genet.42.110807.091524.
Dufresne F, Hebert PD. Hybridization and origins of polyploidy. Proc R Soc Lond. Series B: Biological Sciences. 1994;258(1352):141-6. http://dx.doi.org/10.1098/rspb.1994.0154.
Flagel L, Udall J, Nettleton D, et al. Duplicate gene expression in allopolyploid Gossypiumreveals two temporally distinct phases of expression evolution. BMC Biol. 2008;6(1):16. https://doi.org/10.1186/1741-7007-6-16.
Flagel LE, Wendel JF. Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol. 2010;186(1):184-93. https://doi.org/10.1111/j.1469-8137.2009.03107.x.
Gaeta RT, Pires JC, Iniguez-Luy F, et al. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell. 2007;19(11):3403-17. https://doi.org/10.1105/tpc.107.054346.
Gaeta RT, Yoo S-Y, Pires J, et al. Analysis of gene expression in resynthesized Brassica napus allopolyploids using Arabidopsis 70mer oligo microarrays. PloS one. 2009;4(3):e4760. https://doi.org/10.1371/journal.pone.0004760.
Grover C, Gallagher J, Szadkowski E, et al. Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol. 2012;196(4):966-71. https://doi.org/10.1111/j.1469-8137.2012.04365.x.
Han F, Fedak G, Guo W, et al. Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics. 2005;170(3):1239-45. https://dx.doi.org/ 10.1534/genetics.104.039263.
Hovav R, Udall JA, Chaudhary B, et al. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc Natl Acad Sci. 2008;105(16):6191-5. https://doi.org/10.1073/pnas.0711569105.
Hughes TE, Langdale JA, Kelly S. The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize. Genome Res. 2014;24(8):1348-55. https://dx.doi.org/ 10.1101/gr.172684.
Kashkush K, Feldman M, Levy AA. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet. 2003;33(1):102-6. https://doi.org/10.1038/ng1063.
Kleessen S, Laitinen R, Fusari CM, et al. Metabolic efficiency underpins performance trade-offs in growth of Arabidopsis thaliana. Nat Commun. 2014;5(1):1-10. https://doi.org/10.1038/ncomms4537.
Kleinjan DA, Bancewicz RM, Gautier P, et al. Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genet. 2008;4(2):e29. https://doi.org/10.1371/journal.pgen.0040029.
Korn M, Gärtner T, Erban A, et al. Predicting Arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition. Mol Plant. 2010;3(1):224-35. https://doi.org/10.1093/mp/ssp105.
Kovarik A, Dadejova M, Lim YK, et al. Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot. 2008;101(6):815-23. https://doi.org/10.1093/aob/mcn019.
Kraitshtein Z, Yaakov B, Khasdan V, et al. Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. Genetics. 2010;186(3):801-12. https://doi.org/10.1534/genetics.110.120790.
Li A, Liu D, Wu J, et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell. 2014;26(5):1878-900. https://doi.org/10.1105/tpc.114.124388.
Li M, Wang R, Wu X, et al. Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus. BMC genomics. 2020;21:1-15. https://doi.org/10.1186/s12864-020-6747-1.
Li X, Shahzad K, Guo L, et al. Using yield quantitative trait locus targeted SSR markers to study the relationship between genetic distance and yield heterosis in upland cotton (Gossypium hirsutum). Plant Breed. 2019;138(1):105-13. https://doi.org/10.1111/pbr.12668.
Liu S-L, Adams KL. Dramatic change in function and expression pattern of a gene duplicated by polyploidy created a paternal effect gene in the Brassicaceae. Mol Biol Evol. 2010;27(12):2817-28. https://doi.org/10.1093/molbev/msq169.
Ma Q, Hedden P, Zhang Q. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant Physiol. 2011;156(4):1905-20. https://doi.org/10.1104/pp.111.178046.
Madlung A, Masuelli RW, Watson B, et al. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol. 2002;129(2):733-46. https://doi.org/10.1104/pp.003095.
McGrath CL, Gout J-F, Johri P, et al. Differential retention and divergent resolution of duplicate genes following whole-genome duplication. Genome Res. 2014;24(10):1665-75. 10.1101/gr.173740.114.
Miller M, Song Q, Shi X, et al. Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nat Commun. 2015;6(1):1-13. https://doi.org/10.1038/ncomms8453.
Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet and Genomics. 2004;270(5):371-7. https://doi.org/10.1007/s00438-003-0939-7.
Ren L, Cui J, Wang J, et al. Analyzing homoeolog expression provides insights into the rediploidization event in gynogenetic hybrids of Carassius auratus red var.× Cyprinus carpio. Sci Rep. 2017;7(1):1-11. https://doi.org/10.1038/s41598-017-14084-7.
Ren L, Li W, Tao M, et al. Homoeologue expression insights into the basis of growth heterosis at the intersection of ploidy and hybridity in Cyprinidae. Sci Rep. 2016;6(1):1-12. https://doi.org/10.1038/srep27040.
Salmon A, Flagel L, Ying B, et al. Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol. 2010;186(1):123-34. 10.1111/j.1469-8137.2009.03093.x.
Samuel Yang S, Cheung F, Lee JJ, et al. Accumulation of genome‐specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J. 2006;47(5):761-75. 10.1111/j.1365-313X.2006.02829.x.
Schnable JC, Freeling M. Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. PloS one. 2011;6(3):e17855. https://doi.org/10.1371/journal.pone.0017855.
Schnable PS, Springer NM. Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol. 2013;64. 10.1146/annurev-arplant-042110-103827.
Shahzad K, Qi T, Guo L, et al. Adaptability and stability comparisons of inbred and hybrid cotton in yield and fiber quality traits. Agronomy. 2019b;9(9):516. https://doi.org/10.3390/agronomy9090516.
Shahzad K, Xue L, Tingxiang Q, et al. Genetic analysis of yield and fiber quality traits in upland cotton (Gossypium hirsutum L.) cultivated in different ecological regions of China. J Cotton Res. 2019a;2(1):14. https://doi.org/10.1186/s42397-019-0031-4.
Shahzad K, Zhang X, Guo L, et al. Comparative transcriptome analysis of inbred lines and contrasting hybrids reveals overdominance mediate early biomass vigor in hybrid cotton. BMC genomics. 2020a;21(1):1-16. https://doi.org/10.1186/s12864-020-6561-9.
Shahzad K, Zhang X, Guo L, et al. Comparative transcriptome analysis between inbred and hybrids reveals molecular insights into yield heterosis of upland cotton. BMC Plant Biol. 2020b;20:1-18. https://doi.org/10.1186/s12870-020-02442-z.
Szadkowski E, Eber F, Huteau V, et al. The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol. 2010;186(1):102-12. 10.1111/j.1469-8137.2010.03182.x.
Wang J, Tian L, Lee H-S, et al. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics. 2006;172(1):507-17. 10.1534/genetics.105.047894.
Wang J, Tian L, Madlung A, et al. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics. 2004;167(4):1961-73. 10.1534/genetics.104.027896
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57-63. https://doi.org/10.1038/nrg2484.
Wang Z, Xue Z, Wang T. Differential analysis of proteomes and metabolomes reveals additively balanced networking for metabolism in maize heterosis. J Proteome Res. 2014;13(9):3987-4001. https://doi.org/10.1021/pr500337j.
Wood TE, Takebayashi N, Barker MS, et al. The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci. 2009;106(33):13875-9. https://doi.org/10.1073/pnas.0811575106.
Wu J, Lin L, Xu M, et al. Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus. BMC genomics. 2018;19(1):1-13. https://doi.org/10.1186/s12864-018-4966-5.
Xiao J, Li J, Yuan L, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics. 1995;140(2):745-54.
Yao H, Gray AD, Auger DL, et al. Genomic dosage effects on heterosis in triploid maize. Proc Natl Acad Sci. 2013;110(7):2665-9. https://doi.org/10.1073/pnas.1221966110.
Yoo M, Szadkowski E, Wendel J. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity. 2013;110(2):171. https://doi.org/10.1038/hdy.2012.94.
Yu S, Li J, Xu C, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci. 1997;94(17):9226-31. https://doi.org/10.1073/pnas.94.17.9226.
Zhang D, Pan Q, Tan C, et al. Genome-wide gene expressions respond differently to A-subgenome origins in Brassica napus synthetic hybrids and natural allotetraploid. Front Plant Sci. 2016;7:1508. https://doi.org/10.3389/fpls.2016.01508.