1 Moore, C. M., Mills, M.M., Arrigo, K.R. I. Berman-Frank, L. Bopp, P. W. Boyd, E. D. Galbraith, , R. J. Geider, C. G., S. L. Jaccard, T. D. Jickells, J. La Roche, T. M. Lenton, N. M. Mahowald, , E. Marañón, I. M., J. K. Moore, T. Nakatsuka, A. Oschlies, M. A. Saito, T. F. Thingstad, & Ullo, A. T. O. Processes and patterns of oceanic
nutrient limitation. Nature Geoscience 6, 701-710 (2013).
2 Lee, C. C., Ribbe, M. W. & Hu, Y. Cleaving the n,n triple bond: the transformation of dinitrogen to ammonia by nitrogenases. Met Ions Life Sci 14, 147-176 (2014). https://doi.org:10.1007/978-94-017-9269-1_7
3 Einsle, O. & Rees, D. C. Structural Enzymology of Nitrogenase Enzymes. Chem Rev 120, 4969-5004 (2020). https://doi.org:10.1021/acs.chemrev.0c00067
4 Kneip, C., Lockhart, P., Voss, C. & Maier, U. G. Nitrogen fixation in eukaryotes--new models for symbiosis. BMC Evol Biol 7, 55 (2007). https://doi.org:10.1186/1471-2148-7-55
5 Fiore, C. L., Jarett, J. K., Olson, N. D. & Lesser, M. P. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol 18, 455-463 (2010). https://doi.org:10.1016/j.tim.2010.07.001
6 Cornejo-Castillo, F. M. & Zehr, J. P. Hopanoid lipids may facilitate aerobic nitrogen fixation in the ocean. Proc Natl Acad Sci U S A 116, 18269-18271 (2019). https://doi.org:10.1073/pnas.1908165116
7 Inomura, K. et al. Quantifying Oxygen Management and Temperature and Light Dependencies of Nitrogen Fixation by Crocosphaera watsonii. mSphere 4 (2019). https://doi.org:10.1128/mSphere.00531-19
8 Inomura, K., Wilson, S. T. & Deutsch, C. Mechanistic Model for the Coexistence of Nitrogen Fixation and Photosynthesis in Marine Trichodesmium. mSystems 4 (2019). https://doi.org:10.1128/mSystems.00210-19
9 Munoz-Marin, M. D. C. et al. The Transcriptional Cycle Is Suited to Daytime N2 Fixation in the Unicellular Cyanobacterium "Candidatus Atelocyanobacterium thalassa" (UCYN-A). mBio 10 (2019). https://doi.org:10.1128/mBio.02495-18
10 Schlesier, J., Rohde, M., Gerhardt, S. & Einsle, O. A Conformational Switch Triggers Nitrogenase Protection from Oxygen Damage by Shethna Protein II (FeSII). J Am Chem Soc 138, 239-247 (2016). https://doi.org:10.1021/jacs.5b10341
11 Bothe, H., Tripp, H. J. & Zehr, J. P. Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Arch Microbiol 192, 783-790 (2010). https://doi.org:10.1007/s00203-010-0621-5
12 Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol 3, 804-813 (2018). https://doi.org:10.1038/s41564-018-0176-9
13 Delmont, T. O. P. K., J.S. Veseli, I., Fuessel, J. Murat Eren, A., Foster, R.A., Bowler, C., Wincker, P., Pelletier, E. Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean. doi: https://doi.org/10.1101/2021.03.24.436778 (2021).
14 Farnelid, H. et al. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS One 6, e19223 (2011). https://doi.org:10.1371/journal.pone.0019223
15 Moisander, P. H. et al. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments. Front Microbiol 8, 1736 (2017). https://doi.org:10.3389/fmicb.2017.01736
16 Harding, K. J. et al. Cell-specific measurements show nitrogen fixation by particle-attached putative non-cyanobacterial diazotrophs in the North Pacific Subtropical Gyre. Nat Commun 13, 6979 (2022). https://doi.org:10.1038/s41467-022-34585-y
17 Sullivan, B. W. et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc Natl Acad Sci U S A 111, 8101-8106 (2014). https://doi.org:10.1073/pnas.1320646111
18 de Lajudie, P. et al. Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48 Pt 2, 369-382 (1998). https://doi.org:10.1099/00207713-48-2-369
19 Yang, X. et al. Mesorhizobium alexandrii sp. nov., isolated from phycosphere microbiota of PSTs-producing marine dinoflagellate Alexandrium minutum amtk4. Antonie Van Leeuwenhoek 113, 907-917 (2020). https://doi.org:10.1007/s10482-020-01400-x
20 Zhang, X., Tong, J., Dong, M., Akhtar, K. and He, B. Isolation, identification and characterization of nitrogen fixing endophytic bacteria and their effects on cassava production. PeerJ. 10: e12677 10 (2022).
21 Bostrom, K. H., Riemann, L., Kuhl, M. & Hagstrom, A. Isolation and gene quantification of heterotrophic N2-fixing bacterioplankton in the Baltic Sea. Environ Microbiol 9, 152-164 (2007). https://doi.org:10.1111/j.1462-2920.2006.01124.x
22 Sy, A. et al. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183, 214-220 (2001). https://doi.org:10.1128/JB.183.1.214-220.2001
23 Medigue, C. et al. MicroScope-an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data. Brief Bioinform 20, 1071-1084 (2019). https://doi.org:10.1093/bib/bbx113
24 Lesser, M. P., Morrow, K. M., Pankey, S. M. & Noonan, S. H. C. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J 12, 813-824 (2018). https://doi.org:10.1038/s41396-017-0008-6
25 Videira, S. S., de Araujo, J. L., Rodrigues Lda, S., Baldani, V. L. & Baldani, J. I. Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett 293, 11-19 (2009). https://doi.org:10.1111/j.1574-6968.2008.01475.x
26 Skorupska, A., Janczarek, M., Marczak, M., Mazur, A. & Krol, J. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5, 7 (2006). https://doi.org:10.1186/1475-2859-5-7
27 Hernandez, J. A. et al. NifX and NifEN exchange NifB cofactor and the VK-cluster, a newly isolated intermediate of the iron-molybdenum cofactor biosynthetic pathway. Mol Microbiol 63, 177-192 (2007). https://doi.org:10.1111/j.1365-2958.2006.05514.x
28 Jasniewski, A. J., Lee, C. C., Ribbe, M. W. & Hu, Y. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chem Rev 120, 5107-5157 (2020). https://doi.org:10.1021/acs.chemrev.9b00704
29 Wang, T. et al. Structure of a bacterial energy-coupling factor transporter. Nature 497, 272-276 (2013). https://doi.org:10.1038/nature12045
30 Geiger, O. & Lopez-Lara, I. M. Rhizobial acyl carrier proteins and their roles in the formation of bacterial cell-surface components that are required for the development of nitrogen-fixing root nodules on legume hosts. FEMS Microbiol Lett 208, 153-162 (2002). https://doi.org:10.1111/j.1574-6968.2002.tb11075.x
31 Cook, A. M. & Denger, K. Metabolism of taurine in microorganisms: a primer in molecular biodiversity? Adv Exp Med Biol 583, 3-13 (2006). https://doi.org:10.1007/978-0-387-33504-9_1
32 Boutte, C. C. & Crosson, S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol 21, 174-180 (2013). https://doi.org:10.1016/j.tim.2013.01.002
33 Stuffle, E. C., Johnson, M. S. & Watts, K. J. PAS domains in bacterial signal transduction. Curr Opin Microbiol 61, 8-15 (2021). https://doi.org:10.1016/j.mib.2021.01.004
34 Madigan, M., Cox, S. S. & Stegeman, R. A. Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157, 73-78 (1984). https://doi.org:10.1128/jb.157.1.73-78.1984
35 Singh, R. K. et al. Unraveling Nitrogen Fixing Potential of Endophytic Diazotrophs of Different Saccharum Species for Sustainable Sugarcane Growth. International Journal of Molecular Sciences 23, 6242 (2022).
36 Sellstedt, A., Richau, K.H. Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiology Letters 342, 179–186 (2013).
37 Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data 2, 150023 (2015). https://doi.org:10.1038/sdata.2015.23
38 Karsenti, E. et al. A holistic approach to marine eco-systems biology. PLoS biology 9, e1001177 (2011). https://doi.org:10.1371/journal.pbio.1001177
39 Sanudo-Wilhelmy, S. A. et al. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411, 66-69 (2001). https://doi.org:10.1038/35075041
40 Ward BA, D. S., Moore CM, Follows MJ. Iron, phosphorus, and nitrogen supply ratios define the biogeography of
nitrogen fixation. . Limnol Oceanogr. 58, 2059–2075 (2013).
41 Bombar, D., Paerl, R. W. & Riemann, L. Marine Non-Cyanobacterial Diazotrophs: Moving beyond Molecular Detection. Trends Microbiol 24, 916-927 (2016). https://doi.org:10.1016/j.tim.2016.07.002
42 Geisler, E., Bogler, A., Rahav, E. & Bar-Zeev, E. Direct Detection of Heterotrophic Diazotrophs Associated with Planktonic Aggregates. Sci Rep 9, 9288 (2019). https://doi.org:10.1038/s41598-019-45505-4
43 Ochman, H. & Moran, N. A. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292, 1096-1099 (2001). https://doi.org:10.1126/science.1058543
44 Farnelid, H. et al. Active nitrogen-fixing heterotrophic bacteria at and below the chemocline of the central Baltic Sea. ISME J 7, 1413-1423 (2013). https://doi.org:10.1038/ismej.2013.26
45 Hamersley R, T. K., Leinweber A, Gruber N, Zehr JP et al . . Nitrogen fixation within the water column associated with two hypoxic basins within the Southern California Bight. Aquat Microb Ecol. 63, 193–205 (2011).
46 Wang, D., Xu, A., Elmerich, C. & Ma, L. Z. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. ISME J 11, 1602-1613 (2017). https://doi.org:10.1038/ismej.2017.30
47 Maier, R. J. & Moshiri, F. Role of the Azotobacter vinelandii nitrogenase-protective shethna protein in preventing oxygen-mediated cell death. J Bacteriol 182, 3854-3857 (2000). https://doi.org:10.1128/JB.182.13.3854-3857.2000
48 Brian, A. C. J., C. W. . The respiratory system of Azotobacter vinelandii. Eur. J. Biochem. 20, 29–35 (1971).
49 Chakraborty, S. et al. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat Commun 12, 4085 (2021). https://doi.org:10.1038/s41467-021-23875-6
50 Jorgensen, J. H., Pfaller, M.A., Carroll, K.C., Funke, G., Landry, M.L., Richter, S.S and Warnock., D.W. . Manual of Clinical Microbiology. 11th edn, Vol. 1 (2015).
51 Isenberg, H. D. Clinical Microbiology Procedures Handbook. 2nd Edition edn, Vol. 1 (Amer Society for Microbiology, 1992).
52 Paudel, D. et al. Isolation, Characterization, and Complete Genome Sequence of a Bradyrhizobium Strain Lb8 From Nodules of Peanut Utilizing Crack Entry Infection. Front Microbiol 11, 93 (2020). https://doi.org:10.3389/fmicb.2020.00093
53 Seitzinger, S. P., and Garber, J. H. . Nitrogen-fixation and N-15(2) calibration
of the acetylene-reduction assay in coastal marine-sediments. . Mar. Ecol. Progr. Ser 65–73, 65–73 (1987).
54 Hardy RWF, H. R., Jackson EK, Burns RC. . The
Acetylene-Ethylene Assay for N2 fixation: laboratory and
field evaluation. Plant Phys 43, 1185–1207 (1968).
55 Tanaka A, D. M. A., Amato A, Montsant A, Mathieu B, Rostaing P, Tirichine L & Bowler C. . Ultrastructure and Membrane Traffic During Cell Division in the Marine Pennate Diatom Phaeodactylum tricornutum. Protist 166, 506-521 (2015).
56 Baldani, J. I., Reis, V.M., Videira, S.S. et al. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384, 413–431
57 Jha, C. K., Patel, D., Rajendran, N. & Saraf, M. Combinatorial assessment on dominance and informative diversity of PGPR from rhizosphere of Jatropha curcas L. J Basic Microbiol 50, 211-217 (2010). https://doi.org:10.1002/jobm.200900272
58 Gaby, J. C. & Buckley, D. H. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database (Oxford) 2014, bau001 (2014). https://doi.org:10.1093/database/bau001
59 Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinformatics 21, 257 (2020). https://doi.org:10.1186/s12859-020-03585-4
60 Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824-834 (2017). https://doi.org:10.1101/gr.213959.116
61 Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605-607 (2016). https://doi.org:10.1093/bioinformatics/btv638
62 Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019). https://doi.org:10.7717/peerj.7359
63 Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3, 836-843 (2018). https://doi.org:10.1038/s41564-018-0171-1
64 Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11, 2864-2868 (2017). https://doi.org:10.1038/ismej.2017.126
65 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043-1055 (2015). https://doi.org:10.1101/gr.186072.114
66 Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010). https://doi.org:10.1186/1471-2105-11-119
67 Steinegger, M. & Soding, J. Clustering huge protein sequence sets in linear time. Nat Commun 9, 2542 (2018). https://doi.org:10.1038/s41467-018-04964-5
68 Giguere, D. J., Bahcheli, A.T., Joris, B.R., Paulssen, J.M., Gieg, L.M., Flatley, M.W., Gloor, G.B. Complete and validated genomes from a metagenome. doi: https://doi.org/10.1101/2020.04.08.032540 (2020).
69 Meyer, F. et al. Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit. Nat Protoc 16, 1785-1801 (2021). https://doi.org:10.1038/s41596-020-00480-3
70 Song, W. Z. & Thomas, T. Binning_refiner: improving genome bins through the combination of different binning programs. Bioinformatics 33, 1873-1875 (2017). https://doi.org:10.1093/bioinformatics/btx086
71 Coil, D. A. et al. Genomes from bacteria associated with the canine oral cavity: A test case for automated genome-based taxonomic assignment. PLoS One 14, e0214354 (2019). https://doi.org:10.1371/journal.pone.0214354
72 Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics (2019). https://doi.org:10.1093/bioinformatics/btz848
73 Pellow, D. et al. SCAPP: an algorithm for improved plasmid assembly in metagenomes. Microbiome 9, 144 (2021). https://doi.org:10.1186/s40168-021-01068-z
74 Antipov, D., Raiko, M., Lapidus, A. & Pevzner, P. A. Plasmid detection and assembly in genomic and metagenomic data sets. Genome Res 29, 961-968 (2019). https://doi.org:10.1101/gr.241299.118
75 Royer, G. et al. PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microb Genom 4 (2018). https://doi.org:10.1099/mgen.0.000211
76 Tanizawa, Y., Fujisawa, T., Kaminuma, E., Nakamura, Y. & Arita, M. DFAST and DAGA: web-based integrated genome annotation tools and resources. Biosci Microbiota Food Health 35, 173-184 (2016). https://doi.org:10.12938/bmfh.16-003
77 Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol (2021). https://doi.org:10.1093/molbev/msab293
78 Delmont, T., Gaia, M., Hinsinger DD., et. al. . Functional repertoire convergence of distantly related eukaryotic plankton lineages revealed by genome-resolved metagenomics. Cell Genomics 2 (2022).
79 Tackmann, J., Matias Rodrigues, J. F. & von Mering, C. Rapid Inference of Direct Interactions in Large-Scale Ecological Networks from Heterogeneous Microbial Sequencing Data. Cell Syst 9, 286-296 e288 (2019). https://doi.org:10.1016/j.cels.2019.08.002
80 Fernández, J. A. M., Vidal, C.B.& Glahn, V.P. . Dealing with Zeros and Missing Values in Compositional Data Sets Using Nonparametric Imputation. Mathematical Geology 35, pages253–278 (2003).
81 Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. Gigascience 8 (2019). https://doi.org:10.1093/gigascience/giz107