1. O’Leary MF, Jackman SR, Sabou VR, et al (2021) Shatavari Supplementation in Postmenopausal Women Improves Handgrip Strength and Increases Vastus lateralis Myosin Regulatory Light Chain Phosphorylation but Does Not Alter Markers of Bone Turnover. Nutrients 13:4282. https://doi.org/10.3390/nu13124282
2. Anders JPV, Keller JL, Smith CM, et al (2020) The Effects of Asparagus Racemosus Supplementation Plus 8 Weeks of Resistance Training on Muscular Strength and Endurance. J Funct Morphol Kinesiol 5:. https://doi.org/10.3390/jfmk5010004
3. Collins BC, Laakkonen EK, Lowe DA (2019) Aging of the Musculoskeletal System: How the Loss of Estrogen Impacts Muscle Strength. Bone 123:137–144. https://doi.org/10.1016/j.bone.2019.03.033
4. Greising SM, Baltgalvis KA, Lowe DA, Warren GL (2009) Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci 64:1071–1081. https://doi.org/10.1093/gerona/glp082
5. Negi JS, Singh P, Joshi GP, et al (2010) Chemical constituents of Asparagus. Pharmacogn Rev 4:215–220. https://doi.org/10.4103/0973-7847.70921
6. Akiyama M, Mizokami T, Miyamoto S, Ikeda Y (2022) Kaempferol increases intracellular ATP content in C2C12 myotubes under hypoxic conditions by suppressing the HIF-1α stabilization and/or by enhancing the mitochondrial complex IV activity. J Nutr Biochem 103:108949. https://doi.org/10.1016/j.jnutbio.2022.108949
7. Seo S, Lee M-S, Chang E, et al (2015) Rutin Increases Muscle Mitochondrial Biogenesis with AMPK Activation in High-Fat Diet-Induced Obese Rats. Nutrients 7:8152–8169. https://doi.org/10.3390/nu7095385
8. Paulsen G, Hamarsland H, Cumming KT, et al (2014) Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. J Physiol 592:5391–5408. https://doi.org/10.1113/jphysiol.2014.279950
9. Bjørnsen T, Salvesen S, Berntsen S, et al (2016) Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scand J Med Sci Sports 26:755–763. https://doi.org/10.1111/sms.12506
10. Dutra MT, Martins WR, Ribeiro ALA, Bottaro M (2020) The Effects of Strength Training Combined with Vitamin C and E Supplementation on Skeletal Muscle Mass and Strength: A Systematic Review and Meta-Analysis. J Sports Med 2020:3505209. https://doi.org/10.1155/2020/3505209
11. Wangdi JT, O’Leary MF, Kelly VG, et al (2022) Tart Cherry Supplement Enhances Skeletal Muscle Glutathione Peroxidase Expression and Functional Recovery after Muscle Damage. Med Sci Sports Exerc 54:609–621. https://doi.org/10.1249/MSS.0000000000002827
12. Damas F, Ugrinowitsch C, Libardi CA, et al (2018) Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress. Eur J Appl Physiol 118:2607–2616. https://doi.org/10.1007/s00421-018-3984-y
13. Mesquita PHC, Lamb DA, Godwin JS, et al (2021) Effects of Resistance Training on the Redox Status of Skeletal Muscle in Older Adults. Antioxidants 10:350. https://doi.org/10.3390/antiox10030350
14. Paulussen KJM, McKenna CF, Beals JW, et al (2021) Anabolic Resistance of Muscle Protein Turnover Comes in Various Shapes and Sizes. Front Nutr 8:
15. Cegielski J, Wilkinson DJ, Brook MS, et al (2021) Combined in vivo muscle mass, muscle protein synthesis and muscle protein breakdown measurement: a “Combined Oral Stable Isotope Assessment of Muscle (COSIAM)” approach. GeroScience 43:2653–2665. https://doi.org/10.1007/s11357-021-00386-2
16. Ge T, Yang J, Zhou S, et al (2020) The Role of the Pentose Phosphate Pathway in Diabetes and Cancer. Front Endocrinol 11:
17. Zou K, Meador BM, Johnson B, et al (2011) The α7β1-integrin increases muscle hypertrophy following multiple bouts of eccentric exercise. J Appl Physiol 111:1134–1141. https://doi.org/10.1152/japplphysiol.00081.2011
18. Boppart MD, Mahmassani ZS (2019) Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy. Am J Physiol Cell Physiol 317:C629–C641. https://doi.org/10.1152/ajpcell.00009.2019
19. Mavropalias G, Wu Y-F, Boppart MD, et al (2022) Increases in Integrin-ILK-RICTOR-Akt Proteins, Muscle Mass, and Strength after Eccentric Cycling Training. Med Sci Sports Exerc 54:89–97. https://doi.org/10.1249/MSS.0000000000002778
20. Jones NC, Fedorov YV, Rosenthal RS, Olwin BB (2001) ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186:104–115. https://doi.org/10.1002/1097-4652(200101)186:1<104::AID-JCP1015>3.0.CO;2-0
21. Eigler T, Zarfati G, Amzallag E, et al (2021) ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Dev Cell 56:3349-3363.e6. https://doi.org/10.1016/j.devcel.2021.11.022
22. Alter J, Rozentzweig D, Bengal E (2008) Inhibition of myoblast differentiation by tumor necrosis factor alpha is mediated by c-Jun N-terminal kinase 1 and leukemia inhibitory factor. J Biol Chem 283:23224–23234. https://doi.org/10.1074/jbc.M801379200
23. Lessard SJ, MacDonald TL, Pathak P, et al (2018) JNK regulates muscle remodeling via myostatin/SMAD inhibition. Nat Commun 9:3030. https://doi.org/10.1038/s41467-018-05439-3
24. Widegren U, Wretman C, Lionikas A, et al (2000) Influence of exercise intensity on ERK/MAP kinase signalling in human skeletal muscle. Pflüg Arch 441:317–322. https://doi.org/10.1007/s004240000417
25. Figueiredo VC, Farnfield MM, Ross MLR, et al (2019) The Effect of Carbohydrate Ingestion Following Eccentric Resistance Exercise on AKT/mTOR and ERK Pathways: A Randomized, Double-Blinded, Crossover Study. Int J Sport Nutr Exerc Metab 29:664–670. https://doi.org/10.1123/ijsnem.2019-0075
26. Migliaccio N, Sanges C, Ruggiero I, et al (2013) Raf kinases in signal transduction and interaction with translation machinery. Biomol Concepts 4:391–399. https://doi.org/10.1515/bmc-2013-0003
27. Jones RA, Harrison C, Eaton SL, et al (2017) Cellular and Molecular Anatomy of the Human Neuromuscular Junction. Cell Rep 21:2348–2356. https://doi.org/10.1016/j.celrep.2017.11.008
28. Power GA, Allen MD, Gilmore KJ, et al (2016) Motor unit number and transmission stability in octogenarian world class athletes: Can age-related deficits be outrun? J Appl Physiol Bethesda Md 1985 121:1013–1020. https://doi.org/10.1152/japplphysiol.00149.2016
29. Hourigan ML, McKinnon NB, Johnson M, et al (2015) Increased motor unit potential shape variability across consecutive motor unit discharges in the tibialis anterior and vastus medialis muscles of healthy older subjects. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 126:2381–2389. https://doi.org/10.1016/j.clinph.2015.02.002
30. Piasecki M, Ireland A, Coulson J, et al (2016) Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling. Physiol Rep 4:e12987. https://doi.org/10.14814/phy2.12987
31. Jones EJ, Piasecki J, Ireland A, et al (2021) Lifelong exercise is associated with more homogeneous motor unit potential features across deep and superficial areas of vastus lateralis. GeroScience 43:1555–1565. https://doi.org/10.1007/s11357-021-00356-8
32. Zampieri S, Pietrangelo L, Loefler S, et al (2015) Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol A Biol Sci Med Sci 70:163–173. https://doi.org/10.1093/gerona/glu006
33. Sonjak V, Jacob K, Morais JA, et al (2019) Fidelity of muscle fibre reinnervation modulates ageing muscle impact in elderly women. J Physiol 597:5009–5023. https://doi.org/10.1113/JP278261
34. Kohli D, Champawat PS, Mudgal VD Asparagus (Asparagus racemosus L.) roots: nutritional profile, medicinal profile, preservation, and value addition. J Sci Food Agric n/a: https://doi.org/10.1002/jsfa.12358
35. Srivastava PL, Shukla A, Kalunke RM (2018) Comprehensive metabolic and transcriptomic profiling of various tissues provide insights for saponin biosynthesis in the medicinally important Asparagus racemosus. Sci Rep 8:9098. https://doi.org/10.1038/s41598-018-27440-y
36. Bass JJ, Wilkinson DJ, Rankin D, et al (2017) An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 27:4–25. https://doi.org/10.1111/sms.12702
37. Ghosh R, Gilda JE, Gomes AV (2014) The necessity of and strategies for improving confidence in the accuracy of western blots. Expert Rev Proteomics 11:549–560. https://doi.org/10.1586/14789450.2014.939635
38. Reimand J, Isserlin R, Voisin V, et al (2019) Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 14:482–517. https://doi.org/10.1038/s41596-018-0103-9