1 Najrana, T. & Sanchez-Esteban, J. Mechanotransduction as an Adaptation to Gravity. Frontiers in Pediatrics 4, doi:10.3389/fped.2016.00140 (2016).
2 Ferl, R., Wheeler, R., Levine, H. G. & Paul, A.-L. Plants in space. Current Opinion in Plant Biology 5, 258-263, doi:https://doi.org/10.1016/S1369-5266(02)00254-6 (2002).
3 Wakabayashi, K. et al. Persistence of plant hormone levels in rice shoots grown under microgravity conditions in space: its relationship to maintenance of shoot growth. Physiologia plantarum 161, 285-293, doi:10.1111/ppl.12591 (2017).
4 Yano, S. et al. Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station. Advances in Space Research 51, 780-788.
5 Zhang, Y., Wang, L., Xie, J. & Zheng, H. Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta 241, 475-488, doi:10.1007/s00425-014-2196-x (2015).
6 Mazars, C., Brière, C., Grat, S., Pichereaux, C. & Carnero-Diaz, E. Microgravity Induces Changes in Microsome-Associated Proteins of Arabidopsis Seedlings Grown on Board the International Space Station. PloS one 9, e91814 (2014).
7 Bruce et al. Exploring the Limits of Crop Productivity: I. Photosynthetic Efficiency of Wheat in High Irradiance Environments.
8 Wheeler, R. M., Mackowiak, C. L., Stutte, G. W., Sager, J. C. & Corey, K. A. NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies. Advances in Space Research 18, 215-224 (1996).
9 Musgrave, M. E. et al. Gravity independence of seed-to-seed cycling in Brassica rapa. Planta 210, 400-406.
10 Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments. New Phytologist 215 (2017).
11 Bingham, G. E., Levinskikh, M. A., Sytchev, V. N. & Podolsky, I. G. Effects of gravity on plant growth. Journal of Gravitational Physiology 7, P5-8 (2000).
12 Sychev, V. N., Levinskikh, M. A., Gostimsky, S. A., Bingham, G. E. & Podolsky, I. G. Spaceflight effects on consecutive generations of peas grown onboard the Russian segment of the International Space Station. Acta Astronautica 60, p.426-432.
13 Liu, Y., Xie, G., Yang, Q. & Ren, M. Biotechnological development of plants for space agriculture. Nat Commun 12, 5998, doi:10.1038/s41467-021-26238-3 (2021).
14 Boucheron-Dubuisson, E. et al. Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. Journal of Plant Physiology 207, 30-41, doi:https://doi.org/10.1016/j.jplph.2016.09.011 (2016).
15 Staves, M. P. Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta 203, S79-84, doi:10.1007/pl00008119 (1997).
16 Sack, F. D. Plastids and gravitropic sensing. Planta 203, S63-68, doi:10.1007/pl00008116 (1997).
17 Vandenbrink, J. P. & Kiss, J. Z. Plant responses to gravity. Seminars in cell & developmental biology 92, 122-125, doi:10.1016/j.semcdb.2019.03.011 (2019).
18 Soga, K. & Wakabayashi, K. Growth and cortical microtubule dynamics in shoot organs under microgravity and hypergravity conditions. 13, e1422468, doi:10.1080/15592324.2017.1422468 (2018).
19 Kamada, M. et al. Gravity-regulated localization of PsPIN1 is important for polar auxin transport in etiolated pea seedlings: Relevance to the International Space Station experiment. Life sciences in space research 22, 29-37, doi:10.1016/j.lssr.2019.07.001 (2019).
20 Vandenbrink, J. P. et al. RNA-seq analyses of Arabidopsis thaliana seedlings after exposure to blue-light phototropic stimuli in microgravity. American journal of botany 106, 1466-1476, doi:10.1002/ajb2.1384 (2019).
21 Matía, I. et al. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. Journal of Plant Physiology 167, 184-193, doi:https://doi.org/10.1016/j.jplph.2009.08.012 (2010).
22 Paul, A. L., Zupanska, A. K., Schultz, E. R. & Ferl, R. J. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. Bmc Plant Biology 13, 112 (2013).
23 Arakawa, K., Kasuga, J. & Takata, N. Mechanism of Overwintering in Trees. Advances in experimental medicine and biology 1081, 129-147, doi:10.1007/978-981-13-1244-1_8 (2018).
24 Takata, N., Kasuga, J., Takezawa, D., Arakawa, K. & Fujikawa, S. Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi). Journal of experimental botany 58, 3731-3742, doi:10.1093/jxb/erm223 (2007).
25 Malone, S. R. & Ashworth, E. N. Freezing stress response in woody tissues observed using low-temperature scanning electron microscopy and freeze substitution techniques. Plant physiology 95, 871-881, doi:10.1104/pp.95.3.871 (1991).
26 Sakai, A. & Larcher, W. Frost survival of plants: responses and adaptation to freezing stress. Berlin: Springer-Verlag. (1987).
27 Kuprian, E. et al. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordia. Plant, cell & environment 40, 3101-3112, doi:10.1111/pce.13078 (2017).
28 Battaglia, M., Cherry, M. L., Beadle, C. L., Sands, P. J. & Hingston, A. Freezing behaviors in leaf buds of cold-hardy conifers visualized by NMR microscopy. Tree Physiology 18, 521-528 (1998).
29 Steponkus, P. L., Uemura, M., Balsamo, R. A., Arvinte, T. & Lynch, D. V. Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proceedings of the National Academy of Sciences of the United States of America 85, 9026-9030, doi:10.1073/pnas.85.23.9026 (1988).
30 Xin, Z. & Browse, J. Cold Comfort Farm: The acclimation of plants to freezing temperatures. Plant Cell & Environment 23, 893-902 (2000).
31 Kasuga, J., Arakawa, K. & Fujikawa, S. High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. The New phytologist 174, 569-579, doi:10.1111/j.1469-8137.2007.02025.x (2007).
32 Pagter, M., Jensen, C. R., Petersen, K. K., Liu, F. & Arora, R. Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in Hydrangea species differing in cold hardiness. Physiologia plantarum 134, 473-485, doi:10.1111/j.1399-3054.2008.01154.x (2008).
33 P M Chandler, a. & Robertson, M. Gene Expression Regulated by Abscisic Acid and its Relation to Stress Tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 45, 113-141, doi:10.1146/annurev.pp.45.060194.000553 (1994).
34 VEISZ, O. Effect of abscisic acid on the cold hardiness of wheat seedlings. Journal of Plant Physiology 149 (1996).
35 Jankovska-Bortkevic, E., Gaveliene, V., Sveikauskas, V., Mockeviciute, R. & Jankauskiene, J. Foliar Application of Polyamines Modulates Winter Oilseed Rape Responses to Increasing Cold. 9, doi:10.3390/plants9020179 (2020).
36 Eremina, M., Rozhon, W. & Poppenberger, B. Hormonal control of cold stress responses in plants. Cellular and molecular life sciences : CMLS 73, 797-810, doi:10.1007/s00018-015-2089-6 (2016).
37 Pearce, R. S. Molecular analysis of acclimation to cold. Plant Growth Regulation 29, 47-76, doi:10.1023/A:1006291330661 (1999).
38 Ding, J. P. & Pickard, B. G. Modulation of mechanosensitive calcium-selective cation channels by temperature. The Plant journal : for cell and molecular biology 3, 713-720 (1993).
39 Wang, F. et al. Transcriptomic analyses of Pinus koraiensis under different cold stresses. 21, 10, doi:10.1186/s12864-019-6401-y (2020).
40 Ukaji, N. et al. Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant physiology 120, 481-490, doi:10.1104/pp.120.2.481 (1999).
41 ARMSTRONG, A. F., LOGAN, D. C., TOBIN, A. K., O'TOOLE, P. & ATKIN, O. K. Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant, cell & environment 29, 940-949, doi:10.1111/j.1365-3040.2005.01475.x (2006).
42 Kordyum, E. L. & Chapman, D. K. Plants and microgravity: Patterns of microgravity effects at the cellular and molecular levels. Cytology & Genetics 51, 108-116.
43 Kordyum, V. A. et al. in Life Sciences and Space Research (ed R. Holmquist) 199-204 (Pergamon, 1980).
44 Polulyakh, Y. Adaptive changes of plant cell plasma membranes under altered gravity. Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology 5, P167-168 (1998).
45 Nedukha, O., Kordyum, E., V, G., T, V. & I, Z. Fatty acid content and microviscosity in pea seedlings plasmalemma under clinorotation, (2013).
46 Qiu, D., Jian, Y., Zhang, Y. & Xie, G. Plant Gravitropism and Signal Conversion under a Stress Environment of Altered Gravity. Int J Mol Sci 22, doi:10.3390/ijms222111723 (2021).
47 Toyota, M. & Gilroy, S. Gravitropism and mechanical signaling in plants. American journal of botany 100, 111-125, doi:10.3732/ajb.1200408 (2013).
48 Nakamura, M., Toyota, M., Tasaka, M. & Morita, M. T. An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. Plant Cell 23, 1830-1848, doi:10.1105/tpc.110.079442 (2011).
49 Monshausen, G. B., Miller, N. D., Murphy, A. S. & Gilroy, S. Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. The Plant journal : for cell and molecular biology 65, 309-318, doi:10.1111/j.1365-313X.2010.04423.x (2011).
50 Kordyum, E. L. Calcium signaling in plant cells in altered gravity. doi:D - NASA: 00030598 EDAT- 2004/03/09 05:00 MHDA- 2008/08/01 09:00 CRDT- 2004/03/09 05:00 PHST- 2004/03/09 05:00 [pubmed] PHST- 2008/08/01 09:00 [medline] PHST- 2004/03/09 05:00 [entrez] AID - 10.1016/S0273-1177(03)90403-0 [doi] PST - ppublish.
51 Nick, P., Bergfeld R Fau - Schafer, E., Schafer E Fau - Schopfer, P. & Schopfer, P. Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. doi:D - NASA: 00022405 EDAT- 1990/05/01 00:00 MHDA- 2001/09/11 10:01 CRDT- 1990/05/01 00:00 PHST- 1990/05/01 00:00 [pubmed] PHST- 2001/09/11 10:01 [medline] PHST- 1990/05/01 00:00 [entrez] AID - 10.1007/BF02411533 [doi] PST - ppublish.
52 Hayakawa, K., Tatsumi H Fau - Sokabe, M. & Sokabe, M. Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament.
53 Boulant, S., Kural C Fau - Zeeh, J.-C., Zeeh Jc Fau - Ubelmann, F., Ubelmann F Fau - Kirchhausen, T. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis.
54 Kusters, R. et al. Actin shells control buckling and wrinkling of biomembranes.
55 Nava, M. M. et al. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell 181, 800-817.e822, doi:10.1016/j.cell.2020.03.052 (2020).
56 Mortley, D. G., Bonsi, C. K., Hill, W. A., Morris, C. E. & Wheeler, R. M. Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings. Journal of the American Society for Horticultural Science 133, 327-332 (2008).
57 Liu, C., Wang, J., Wu, D. & Tang, Z. Adaptative responses of tobacco callus cells to simulated microgravity by compensation. Microgravity quarterly : MGQ 3, 17-21 (1993).
58 Clement, J. Q. Gene Expression Microarrays in Microgravity Research: Toward the Identification of Major Space Genes. (InTech, 2012).
59 Hausmann, N. et al. Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data. Plant Biology 16, 120-128, doi:doi:10.1111/plb.12051 (2014).
60 Paul, A. L. et al. Spaceflight Transcriptomes: Unique Responses to a Novel Environment. Astrobiology 12, 40-56.
61 Bohnert, H. J., Gong, Q., Li, P. & Ma, S. Unraveling abiotic stress tolerance mechanisms – getting genomics going. 9, 180-188.
62 Zupanska, A. K., Denison, F. C., Ferl, R. J. & Paul, A. L. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. American journal of botany 100 (2013).
63 Kozeko, L. & Kordyum, E. The stress protein level under clinorotation in context of the seedling developmental program and the stress response. Microgravity - Science and Technology 18, 254-256 (2006).
64 Sheet, S. et al. Modulatory effect of low-shear modeled microgravity on stress resistance, membrane lipid composition, virulence, and relevant gene expression in the food-borne pathogen Listeria monocytogenes. Enzyme and Microbial Technology 133, 109440, doi:https://doi.org/10.1016/j.enzmictec.2019.109440 (2020).