[1] T. Castiñeiras, A. Núñez, E. Gallo, G. Carcagno, Dry dope-free OCTG connections: A novel environmentally friendly technology validated through diverse and severe field conditions, SPE/IADC Drill. Conf. Proc. 2 (2009) 879–890. https://doi.org/10.2118/119642-ms.
[2] A. Leech, A. Roberts, Development of premium threaded connections for casing and tubing, SPE Drill. Complet. 22 (2007) 106–111. https://doi.org/10.4028/www.scientific.net/AMR.744.53.
[3] K. Miyoshi, Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey, Nasa Tm-2007-214668. (2007) 1–23. https://doi.org/20070010580.
[4] O. Gohardani, M.C. Elola, C. Elizetxea, Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences, Prog. Aerosp. Sci. 70 (2014) 42–68. https://doi.org/10.1016/j.paerosci.2014.05.002.
[5] C. Donnet, A. Erdemir, Solid lubricant coatings: Recent developments and future trends, Tribol. Lett. 17 (2004) 389–397. https://doi.org/10.1023/B:TRIL.0000044487.32514.1d.
[6] A. Erdemir, J.M. Martin, Superior wear resistance of diamond and DLC coatings, Curr. Opin. Solid State Mater. Sci. 22 (2018) 243–254. https://doi.org/10.1016/j.cossms.2018.11.003.
[7] W. Zhai, N. Srikanth, L.B. Kong, K. Zhou, Carbon nanomaterials in tribology, Carbon N. Y. 119 (2017) 150–171. https://doi.org/10.1016/j.carbon.2017.04.027.
[8] C. Muratore, A.A. Voevodin, Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments, Annu. Rev. Mater. Res. 39 (2009) 297–324. https://doi.org/10.1146/annurev-matsci-082908-145259.
[9] V. Kupčík, L. Veselá-Nováková, Zur Kristallstruktur des Bismuthinits, Bi2S3, TMPM Tschermaks Mineral. Und Petrogr. Mitteilungen. 14 (1970) 55–59. https://doi.org/10.1007/BF01081780.
[10] K. Łukaszewicz, J. Stępień-Damm, A. Pietraszko, A. Kajokas, J. Grigas, Crystal structure, thermal expansion, dielectric permittivity and phase transitions of Bi2S3, Pol. J. Chem. 73 (1999) 541–546.
[11] L.F. Lundegaard, E. Makovicky, T. Boffa-Ballaran, T. Balic-Zunic, Crystal structure and cation lone electron pair activity of Bi2S3 between 0 and 10 GPa, Phys. Chem. Miner. 32 (2005) 578–584. https://doi.org/10.1007/s00269-005-0033-2.
[12] O. Rohr, Bismuth – the new ecologically green metal for modern lubricating engineering, Ind. Lubr. Tribol. 54 (2002) 153–164. https://doi.org/10.1108/00368790210431709.
[13] P. Gonzalez-Rodriguez, K.J.H. van den Nieuwenhuijzen, W. Lette, D.J. Schipper, J.E. ten Elshof, Tribochemistry of Bismuth and Bismuth Salts for Solid Lubrication, ACS Appl. Mater. Interfaces. 8 (2016) 7601–7606. https://doi.org/10.1021/acsami.6b02541.
[14] V.A. Krenev, N.F. Drobot, S. V. Fomichev, Bismuth: Reserves, applications, and the world market, Theor. Found. Chem. Eng. 49 (2015) 532–535. https://doi.org/10.1134/S0040579515040120.
[15] A. Begum, A. Hussain, A. Rahman, Optical and Electrical Properties of Doped and Undoped Bi2S3-PVA Films Prepared by Chemical Drop Method, Mater. Sci. Appl. 02 (2011) 163–168. https://doi.org/10.4236/msa.2011.23020.
[16] P.R.R. Mesquita, J.S. Almeida, L.S.G. Teixeira, A.F. Da Silva, L.A. Silva, A fast sonochemical method to prepare 1D and 3D nanostructures of bismuth sulfide, J. Braz. Chem. Soc. 24 (2013) 280–284. https://doi.org/10.5935/0103-5053.20130036.
[17] H. Zhu, J. Hu, Y. Zhang, Y. Fei, Extreme Pressure Properties and Mechnism of Bismuth Naphthenate with Sulfur Containing Additives, in: Proc. Cist. ITS-IFToMM2008, Beijing, China, 2008: pp. 878–879.
[18] R.T. Hart, A. Kerr, N. Eckert, Bismuth Sulfide (Bi2S3) as the Active Species in Extreme Pressure Lubricants Containing Bismuth Carboxylates and Sulfur Compounds, Tribol. Trans. 53 (2010) 22–28. https://doi.org/10.1080/10402000903154816.
[19] J.Q. Hu, J. Zhu, K.Y. Gao, Y.W. Fei, Study on tribological properties of organic bismuth compounds as lubricationg additive, Adv. Mater. Res. 233–235 (2011) 1632–1635. https://doi.org/10.4028/www.scientific.net/AMR.233-235.1632.
[20] X. Xu, J. Hu, S. Yang, F. Xie, L. Guo, Extreme pressure synergistic mechanism of bismuth naphthenate and sulfurized isobutene, Surf. Rev. Lett. 24 (2017) 1–12. https://doi.org/10.1142/S0218625X17500718.
[21] C. Müller, F.L. Redondo, M. Dennehy, A.E. Ciolino, W.R. Tuckart, Bismuth (III) sulfide as additive: towards better lubricity without toxicity, Ind. Lubr. Tribol. 70 (2018) 347–352. https://doi.org/10.1108/ILT-03-2017-0051.
[22] C. Müller, A.J. Avila, M. Denehy, M.J. Yañez, A.E. Ciolino, W. Tuckart, Morphological and tribological analysis of synthetic and commercial sulfures, Microsc. Microanal. 26 (2020) 115–116. https://doi.org/10.1017/s1431927620000793.
[23] M.R. Vazirisereshk, A. Martini, D.A. Strubbe, M.Z. Baykara, Solid Lubrication with MoS2: A Review, Lubricants. 7 (2019) 57. https://doi.org/10.3390/lubricants7070057.
[24] R. Holinski, J. Gänsheimer, A study of the lubricating mechanism of molybdenum disulfide, Wear. 19 (1972) 329–342.
[25] B. Vierneusel, T. Schneider, S. Tremmel, S. Wartzack, T. Gradt, Humidity resistant MoS2 coatings deposited by unbalanced magnetron sputtering, Surf. Coatings Technol. 235 (2013) 97–107. https://doi.org/10.1016/j.surfcoat.2013.07.019.
[26] E. Serpini, A. Rota, A. Ballestrazzi, D. Marchetto, E. Gualtieri, S. Valeri, The role of humidity and oxygen on MoS2 thin films deposited by RF PVD magnetron sputtering, Surf. Coatings Technol. 319 (2017) 345–352. https://doi.org/10.1016/j.surfcoat.2017.04.006.
[27] X. Zhao, G. Zhang, L. Wang, Q. Xue, The Tribological Mechanism of MoS2 Film under Different Humidity, Tribol. Lett. 65 (2017) 1–8. https://doi.org/10.1007/s11249-017-0847-3.
[28] I.L. Singer, R.N. Bolster, J. Wegand, S. Fayeulle, B.C. Stupp, Hertzian stress contribution to low friction behavior of thin MoS2 coatings, Appl. Phys. Lett. 57 (1990) 995–997. https://doi.org/10.1063/1.104276.
[29] C. Donnet, J.M. Martin, T. Le Mogne, M. Belin, The origin of super-low friction coefficient of MoS2 coatings in various environments, Tribol. Ser. 27 (1994) 277–284. https://doi.org/10.1016/S0167-8922(08)70317-1.
[30] A.K. Kohli, B. Prakash, Contact pressure dependency in frictional behavior of burnished molybdenum disulphide coatings, Tribol. Trans. 44 (2001) 147–151. https://doi.org/10.1080/10402000108982439.
[31] T. Liang, W.G. Sawyer, S.S. Perry, S.B. Sinnott, S.R. Phillpot, First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3, Phys. Rev. B - Condens. Matter Mater. Phys. 77 (2008) 1–6. https://doi.org/10.1103/PhysRevB.77.104105.
[32] T. Onodera, Y. Morlta, A. Suzuki, M. Koyama, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, F. Dassenoy, C. Minfray, L. Joly-Pottuz, J.M. Martin, A. Miyamoto, A computational chemistry study on friction of h-MoS2. Part I. Mechanism of single sheet lubrication, J. Phys. Chem. B. 113 (2009) 16526–16536. https://doi.org/10.1021/jp9069866.
[33] T. Onodera, Y. Morita, R. Nagumo, R. Miura, A. Suzuki, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, F. Dassenoy, C. Minfray, L. Joly-Pottuz, M. Kubo, J.M. Martin, A. Miyamoto, A computational chemistry study on friction of h-MoS2. Part II. Friction anisotropy, J. Phys. Chem. B. 114 (2010) 15832–15838. https://doi.org/10.1021/jp1064775.
[34] G. Levita, A. Cavaleiro, E. Molinari, T. Polcar, M.C. Righi, Sliding properties of MoS2 layers: Load and interlayer orientation effects, J. Phys. Chem. C. 118 (2014) 13809–13816. https://doi.org/10.1021/jp4098099.
[35] G. Levita, P. Restuccia, M.C. Righi, Graphene and MoS2 interacting with water: A comparison by ab initio calculations, Carbon N. Y. 107 (2016) 878–884. https://doi.org/10.1016/j.carbon.2016.06.072.
[36] G. Levita, M.C. Righi, Effects of Water Intercalation and Tribochemistry on MoS2 Lubricity: An Ab Initio Molecular Dynamics Investigation, ChemPhysChem. 18 (2017) 1475–1480. https://doi.org/10.1002/cphc.201601143.
[37] T. Arif, S. Yadav, G. Colas, C.V. Singh, T. Filleter, Understanding the Independent and Interdependent Role of Water and Oxidation on the Tribology of Ultrathin Molybdenum Disulfide (MoS2), Adv. Mater. Interfaces. 6 (2019) 1–9. https://doi.org/10.1002/admi.201901246.
[38] P.K. Chow, E. Singh, B.C. Viana, J. Gao, J. Luo, J. Li, Z. Lin, A.L. Elías, Y. Shi, Z. Wang, M. Terrones, N. Koratkar, Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates, ACS Nano. 9 (2015) 3023–3031. https://doi.org/10.1021/nn5072073.
[39] I.L. Singer, A thermochemical model for analyzing low wear-rate materials, Surf. Coatings Technol. 49 (1991) 474–481. https://doi.org/10.1016/0257-8972(91)90103-4.
[40] E.Y.A. Wornyoh, C.F. Higgs, R. Pudjoprawoto, On the influence of friction on velocity at a powder-lubricated slider-disk interface: Experimentation, in: Proc. STLE/ASME 2010 Int. Jt. Tribol. Conf., San Francisco, (2010) 1–3.
[41] H. Wang, J.J. Zhu, J.M. Zhu, H.Y. Chen, Sonochemical method for the preparation of bismuth sulfide nanorods, J. Phys. Chem. B. 106 (2002) 3848–3854. https://doi.org/10.1021/jp0135003.
[42] L. Greenspan, Humidity fixed points of binary saturated aqueous solutions, J. Res. Natl. Bur. Stand. (1934). 81A (1977) 89–96.
[43] P. Hohenberg, W. Kohn, Inhomogeneous electron gas physical review 136, B864. (1964).
[44] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133.
[45] G. Levita, M.C. Righi, Effects of Water Intercalation and Tribochemistry on MoS2 Lubricity: An Ab Initio Molecular Dynamics Investigation, ChemPhysChem. 18 (2017) 1475–1480. https://doi.org/10.1002/cphc.201601143.
[46] H.S. Khare, D.. Burris, Surface and Subsurface Contributions of Oxidation and Moisture to Room Temperature Friction of Molybdenum Disulfide, Tribol. Lett. 53 (2014) 329–336. https://doi.org/10.1007/s11249-013-0273-0.
[47] H.S. Khare, D.. Burris, The Effects of Environmental Water and Oxygen on the Temperature-Dependent Friction of Sputtered Molybdenum Disulfide, Tribol. Lett. 52 (2013) 485–493. https://doi.org/10.1007/s11249-013-0233-8.
[48] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169.
[49] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758.
[50] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B. 50 (1994) 17953.
[51] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865.
[52] P.K. Panigrahi, A. Pathak, The Growth of Bismuth Sulfide Nanorods from Spherical-Shaped Amorphous Precursor Particles under Hydrothermal Condition, J. Nanoparticles. 2013 (2013) 1–11. https://doi.org/10.1155/2013/367812.
[53] T.W. Scharf, P.G. Kotula, S. V. Prasad, Friction and wear mechanisms in MoS2Sb2O2Au nanocomposite coatings, Acta Mater. 58 (2010) 4100–4109. https://doi.org/10.1016/j.actamat.2010.03.040.
[54] R.L. Fusaro, Lubrication and failure mechanisms of molybdenum disulfide films. II: Effect of substrate roughness, NASA Technical Paper 1379, (1978) 1-31.
[55] T.W. Scharf, S. V. Prasad, Solid lubricants: A review, J. Mater. Sci. 48 (2013) 511–531. https://doi.org/10.1007/s10853-012-7038-2.
[56] S. Fayeulle, P.D. Ehni, I.L. Singer, Analysis of transfer films formed on steel and Co-WC during sliding against MoS2-coated steel in argon, Surf. Coat. Technol. 41 (1990) 93–101.
[57] K.J. Wahl, I.L. Singer, Quantification of a lubricant transfer process that enhances the sliding life of a MoS2 coating, Tribol. Lett. 1 (1995) 59–66. https://doi.org/10.1007/BF00157976.
[58] Z. Nishiyama, Martensitic transformation, Elsevier, 2012.
[59] T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, J. Pollmann, Band structure of MoS2, MoSe2, and α−MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations, Phys. Rev. B. 64 (2001) 235305.
[60] W. Li, J. Carrete, N. Mingo, Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles, Appl. Phys. Lett. 103 (2013) 253103.