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Abstract

Pain is one of the most common adverse reactions during orthodontic treatment, which troubles patients
a lot. Transient receptor potential vanilloid 1 (TRPV1) plays a crucial role in pain transmission and is
expressed in the peripheral nervous system, but there is a paucity of literature on the roles of TRPV1 in
the central nervous system. The central amygdala (CeA) integrates multiple sensory signals including
nociceptive sensory information. However, how the involvement of TRPV1 in the CeA in orthodontic pain
has not been investigated. To explore this, we constructed an experimental tooth movement (ETM) model
using precision springs and evaluated pain behaviour based on face-grooming and the rat grimace scale
(RGS). TRPV1 expression in the CeA was evaluated using immunofluorescence and western blotting.
Face-grooming and RGS score peaked on day 1 then decreased gradually to baseline levels on day 7.
Immunofluorescence and western blotting analysis revealed that TRPV1 expression in the CeA increased
after ETM. Furthermore, changes in TRPV1 expression in the CeA were positively associated with RGS
behaviour. Our findings suggest that TRPV1 in the CeA is modulated by ETM and is involved in tooth-
movement pain, providing a new understanding of central regulation on orthodontic pain.

Introduction

Pain is defined as an unpleasant feeling and emotional experience accompanied by actual or potential
tissue damage [1]. Most orthodontic patients experience pain during the treatment process[2], which can
lead to major dissatisfaction and discontinuation of long-term treatment[3, 4]. Most research on
orthodontic pain have focused on peripheral mechanisms, and central mechanisms remain poorly
defined. Orthodontic pain is thought to be caused by the stimulation of periodontal and pulp tissues,
which can be activated by orthodontic force and local inflammatory mediators. These impulses are
transmitted to the trigeminal ganglion through Ad and C fibres, and then projected to the central nervous
system[5, 6].

Pain is regulated by several cerebral structures, which are involved in detecting, expressing, and
regulating pain. In particular, the amygdala plays a key role in pain perception among structures involved
in pain sensation[7]. In both humans and rodents, the amygdala is activated in response to pain[8, 9.
Among amygdaloid nuclei, the central nucleus of the amygdala (CeA) integrates multiple sensory signals
including nociceptive sensory information. The CeA processes nociceptive input from the spinal-
parabrachial-amygdala pathway and transmits the resulting information to the hypothalamus, substantia
innominate dorsalis and brainstem nuclei that control responses to defensive behaviour[10, 11]. Our
previous research revealed the role of the CeA in orthodontic pain during tooth movement[12].
Specifically, after electrolytic destruction of the CeA, pain during tooth movement was significantly
reduced. Moreover, various pain-related mediators and receptors play key roles in the process of
orthodontic pain and pain information transmission. Transient receptor potential vanilloid type 1 (TRPV1)
is a polymodal noci-transducer that is expressed widely in the cortex, hippocampus, CeA, dentate gyrus,
hypothalamus, striatum, thalamus, nucleus of the trigeminal nerve and inferior olive[13—-16]. TRPV1 is
activated by exogenous chemical and physical stimuli and is considered a novel target for the control of
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inflammatory pain[17]. TRPV1 in the peripheral nervous system has been reported, but few focused on
the roles of TRPV1 in the central nervous system, thus our study may show the role of TRPV1 in the CeA
on regulating orthodontic pain.

Based on our previous findings[12], this study aimed to investigate pain behaviour and TRPV1 expression
in the CeA during tooth movement using behavioural and molecular biology techniques in order to
elucidate the complex pain regulation network and identify effective interventional measures for
orthodontic pain.

Materials And Methods
Experimental design and animals

8W male Sprague-Dawley rats weighing between 200 and 250 g were obtained from the Experimental
Animal Centre of Xi'an Jiaotong University Health Science Centre (Xi'an, China). Rats were nursed in
standard cages with food and water on a 12-h light/12-h dark cycle in a temperature-controlled (21 +
1.5°C) room. Rats were allowed to acclimatise to the housing conditions for at least 5 d before
commencement of experiments. A total of 72 rats were divided into four groups based on force
depending on the extension distance of precision spring as follows: control, 30 g, 50 g, and 80 g groups.
Each group was examined at0 h,4 h,1d, 3 d, 5d, and 7 d after the force. Face-grooming behaviour and
the rat grimace scale (RGS) were used to observe behavioural responses to pain. Tooth movement
distance was evaluated using micro-CT. TRPV1 expression in the CeA was investigated using
immunofluorescence and western blotting. Every effort was made to minimise animal discomfort, in
accordance with the ethical guidelines for animal research[18]. Experimental procedures were conducted
in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals,
and were approved by the Institutional Animal Care Committee of Xi'an Jiaotong University.

Experimental Tooth Movement (ETM)

Rats were anesthetised with sodium pentobarbital (i.p.; 60 mg/kg). A fixed nickel titanium alloy closed-
coil spring appliance was constructed to perform mesial movement of the right maxillary first molar[19].
Specifically, the closed-coil spring hooked the right maxillary first molar and incisors. A shallow groove
was made on the neck of the upper incisors, and a glass ionomer was used as a cover to enhance
retention.

Face-grooming Behaviour

Rats were monitored for directed face-grooming behaviour in transparent plastic cages (40 cm x 40 cm x
40 cm) placed in a room with 45 dB background noise between 9 AM and 12 AM. Rats were allowed to
acclimatise to the housing conditions for at least 15 min before recordings were performed. Behaviour
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was recorded by two cameras for a period of 10 min at each time point, and each rat was recorded three
times at 20 min intervals. The test session was subsequently analysed by two independent observers
who were blinded to the treatment. The average of three estimations was used to yield a mean value for
each animal.

RGS

Cameras were placed on both sides of a transparent box, and each rat was continuously recorded for 30
min. A clear image of the rat's face was captured every 3 min and scored. In total, 10 photos were
captured and encoded for each rat. RGS scoring was performed by two experimenters in a blinded
manner{20].

Micro-CT

Tooth movement distance was measured using micro-CT. The rat's head was placed into a position that
was symmetrically aligned to the three spatial axes within a recordable cylindrical volume of 4 cm x 4 cm
x 4 cm. The distance of the most prominent point from the distal side of the first molar to mesial side of
the second molar of the maxillary was measured and analysed.

Immunohistochemistry

The distribution of TRPV1 receptors in the CeA was analysed using immunofluorescence and western
blot after ETM in control and 50 g-force experimental rats (n = 3 rats per group). Rats were killed with an
overdose of 10% chloral hydrate and perfused with 150 mL of saline solution followed by 500 mL of 4%
paraformaldehyde. Brains were removed and postfixed for 12-24 hours in 4% paraformaldehyde in 0.1 M
phosphate buffer (PB). The brains were then placed in a 30% sucrose solution for another 72 h. Following
sucrose cryoprotection, 25-um sections were cut on a freezing sliding microtome. Sections were stored at
4°C until the tissue was prepared for immunofluorescence[21].

After three washes in phosphate-buffered saline (PBS), tissue sections were incubated for 15 min at room
temperature (23 = 3°C) in a blocking solution of Quickblock™ Blocking Buffer for Immunol Staining
(Beyotime Biotechnology, China). Slides were incubated with rabbit anti-TRPV1 IgG (1:500 dilution;
Alomone, Israel) at 4 °C for 48 h. The specificity of the goat anti rabbit IgG antibody has been reported
previously (Lin and others, 2020). The samples were then incubated with a 488-conjugated goat anti
rabbit IgG (H + L) secondary antibody (1:500 dilution; Immunoway, American) for 4-6 h at room
temperature. Sections were examined under a fluorescence microscope (Olympus, Tokyo, Japan)
equipped with a digital camera.

Western Blot Analysis
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Protein extraction of CeA tissue was conducted with RIPA lysis buffer and a protease inhibitor cocktail
(Roche, Germany). BCA (bicinchoninic acid) method (Beyotime Biotechnology, China) was used to
determine the protein concentration. A total of 30 pg of protein of each sample was separated in 10%
TGX Stain-Free polyacrylamide gels (Bio-Rad, USA). Total protein data were obtained using a GelDoc Go
Imaging System Ordering (Bio-Rad, USA) and transferred onto a membrane. After blocking with 5% skim
milk powder at 25°C for 1 h, the following primary and secondary antibodies were used: polyclonal rabbit
anti-TRPV1 (Santa Cruz, USA), goat-anti-rabbit IgG (1:5000 dilution; CST, American). The densities of the
protein blots were analysed using Imagelab Software (Bio rad, USA). Total protein was used as an
internal control to normalise the target protein levels.

Statistical analysis

Continuous data are expressed as mean + standard deviation (SD). For multiple group comparisons,
initial analysis was performed using one-way analysis of variance (ANOVA) followed by post hoc Fisher’s
least significant difference (LSD) test. Comparisons between two groups were performed using the
Student’s t-test for paired data. Pearson correlation was used to determine the correlation between the
intensity of TRPV1 expression (western blot) and behavioural performance. Differences were considered
statistically significant at P <0.05.

Results
Micro-CT and rate of tooth movement

Tooth movement is presented in Fig. 1. Tooth movement can be observed based on different magnitudes
of force, and the movement distance increases with an increase in force. Before 5 days postoperatively,
the force of 50 g was the fastest. We speculated that the force of 30 g was small, resulting in limited
effects. In contrast, the force of 80 g was too large to move the tooth properly due to latent bone
resorption. Micro-CT results revealed that applying a force of 80 g to the teeth in rats produced evident
root resorption. Accordingly, 50 g was selected as the force magnitude for subsequent experiments.

Face-grooming behaviour After ETM With 50 G Force

In this study, three experimental groups of rats were established: blank control, sham (0 g), and 50 g
groups (n = 8 per group). Changes in face-grooming activity of rats in each group were observed at 4 h, 1
d, 3d,5d,and 7 d (Fig. 2). The analysis revealed that 50 g induced obvious pain behaviour, and the pain
peaked at day 1.

RGD After ETM With 50 G Force
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Changes in RGS score following initiation of ETM are presented in Fig. 3. The results exhibited a similar
tendency to that of face-grooming behaviour.

Expression Of Trpv1 In The CeA After ETM

To investigate the expression of TRPV1 in the CeA after ETM, immunofluorescence analysis was
performed. As shown in Fig. 4, TRPV1 immunofluorescence (indicated in green) was observed in the CeA.
Compared to total protein, TRPV1 expression in the CeA was significantly differentially expressed. TRPV1
was most strongly expressed at 4 h and returned to baseline at 7 d (Fig. 5). A positive correlation was
observed between RGS score and TRPV1 expression in the CeA. Results for the sham-treated (R? =
0.04749,P 0.05) and experimental (R? = 0.3628, P <0.0175) groups are presented in Fig. 6.

Discussion

Pain is a common adverse reaction in the process of orthodontic treatment. Approximately 95% of
patients will experience discomfort and pain during orthodontic treatment, which may result in anxiety
and negatively impact their mental state. Indeed, some patients may even discontinue follow-up
orthodontic treatment[22—-24]. Adults generally spend approximately 2 years on orthodontic treatment,
and there is a high demand for patient compliance during treatment. As pain is a key factor affecting
patients' comfort, it is critical for patients to maintain good compliance during the course of treatment.
Accordingly, it is essential to reduce pain associated with tooth movement to improve patient comfort
and compliance while ensuring treatment quality.

Oral and maxillofacial pain is often evaluated by face-grooming activity, RGS coding and other evaluation
methods[20, 25]. Our group used face-grooming activities and RGS coding to conduct a joint evaluation.
Our analysis revealed that the two evaluation methods had reliability and repeatability. Face-grooming
activities include different actions, such as mouth wiping, forelimb flailing, ear grasping, face-washing
strokes, headshakes, paw licks and chin rubs. Mouth wiping is a directed face-grooming activity that can
be reliably and reproducibly measured and is the most robust behavioural response for pain arising after
ETMI[25]. RGS coding predominantly analyses changes in facial expressions, including orbital tightening
(eye closure or squeezing), nose / cheek flattening (lack of bulge on the top of the nose, flattened and
elongated nose and beard pad and / or crease between the missing pad and cheek), ear changes (pointed
ear that folds, curls and tilts forward or outward), and whisker changes (whiskers move forward and tend
to bunch). This approach is also a reliable method for evaluating pain responses during orthodontic tooth
movement[20, 26].After the establishment of the ETM model in SD rats, scores of face-grooming
activities and RGS coding increased from 4 h to 1 d, peaked at 1 d, decreased from 3 d to 7 d, and
returned to baseline levels at 7 d. These findings are consistent with previous research and clinical
observations of orthodontic pain[27, 28], also implied pain occurrence derived from ETM.

In this study, the rate of tooth movement and pain were measured. Orthodontic tooth movement models

using SD rats are generally established by placing a stainless-steel tension spring between the incisor
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and molars, which relies on the force of the tension spring to produce tooth movement. Under the
continuous action of a 50 g spring force, the first molars of rats could produce the effect of tooth
movement on day 3, and the distance of tooth movement increased continuously with the passage of
time. From day 1 to day 3, tooth movement was faster in the 30 g and 50 g groups than in the 80 g group,
which could be due to excessive stress, osteocyte degeneration and necrosis in the 80 g group. After 7
days, tooth movement rate was significantly increased in the 30 g and 50 g groups, which may be due to
the self-repair of periodontal tissue and active osteoclast phenomenon. In contrast, the basic stagnation
of tooth movement in the 80 g group may be due to severe periodontal damage and necrotic tissue
removal[29].

As the emotional integration centre of the body, the amygdala is closely associated with the production of
pain emotion and its somatic responses (avoidance behaviour). The amygdala is considered a key
nucleus connecting pain and emotion. As a critical structure of the limbic forebrain, the amygdala is a
heterogeneous structure composed of approximately a dozen nuclei[30]. Amygdala activity is
significantly increased in individuals exposed to anxiety-inducing environments and in those with anxiety
disorders. The anatomical connections of the amygdala to other subcortical regions involved in
emotional responses support its role in the processing of anxiety and fear associated with painful stimuli
or experiences. The amygdala comprises the basolateral amygdala, CeA, medial amygdala, cortical
amygdala, and other scattered nuclei. The CeA is the primary output nucleus from the amygdala and
constitutes the main efferent amygdaloid nucleus that projects to the brainstem and hypothalamus. The
CeA receives fibre projections from outside the CeA and has reciprocal fibre connections with these
regions. The CeA integrates inputs from other amygdaloid nuclei, including nociceptive sensory
information[11]. The CeA acts as an emotional integration centre and participates in the regulation of
pain and anxiety. TRPV1 plays a role in the formation of pain sensitisation and neuropathic pain by
interacting with inflammatory mediators and affecting the excitability of nerve fibres and neurons[31]. In
this study, TRPV1 expression in the CeA of rats with orthodontic tooth movement was analysed. The
results highlighted regularity in TRPV1 expression in the CeA among groups. Moreover, TRPV1 expression
was positively correlated with RGS coding. These findings suggest that TRPV1 in the CeA may be
involved in the exacerbation of orthodontic pain.

After establishing the ETM model, our analysis revealed that pain behaviour and TRPV1 expression in the
CeA peaked at day 1. Indeed, there was a correlation between TRPV1 expression and pain behaviour
induced by ETM. However, it remains unclear whether TRPV1 in the CeA is directly expressed in the
central nervous system or transmitted from the peripheral nervous system to the central nervous system,
which warrants further research.

In conclusion, this study established an ETM model by applying 50 g force and analysed the expression
of TRPV1 in the CeA. Our results demonstrated that TRPV1 expression in the CeA was significantly
increased after force application, suggesting that TRPV1 in the CeA may be involved in the regulation of
tooth movement pain in rats.
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Micro-CT performance of EMT. (a) ETM rate in each group from 1 day to 7 d (mm / d). (b) ETM image of
50 g 7 d. Abbreviations: ETM, experimental tooth movement
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Face grooming behaviour following ETM. **P <0.01

Page 12/16



A Score () Score 1 Score 2

Hl ct

RGS Score

Figure 3

Rat grimace scale (RGS) score following ETM. (@) RGS coding magnitude. (b) Quantitative analysis. * P<

0.05,**P<0.01

Page 13/16



100pm

Figure 4

Immunofluorescent expression of TRPV1 in the CeA. Abbreviations: TRPV1, Transient receptor potential
vanilloid 1; CeA, central nucleus of amygdala. TRPV1-immunoreactive neurons are labeled green. Scale
bar =100 pm
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Western blots of TRPV1 in the CeA. (@) TRPV1 expressed in the CeA. (b) Quantitative analysis. ns, no
significance. * P< 0.05, ***P<0.001, ****P<0.01, compared with Blank Group; P<0.05, P<0.01, P
<0.001, P <0.0001, compared with Sham Group

Page 15/16



>

R%=0.04749
0.898- ol P=0.4353

o
7]
-
]
®* @
L ]
L ]
L ]
L ]

Relative Expression
(% change from blank)

o
oo
w
<]
1

[ ]

0.0 0.5 1.0 15 2.0
0 g RGS Score

° ¢ R2-03628
P=0.0175

Relative Expression
(% change from blank)
o
1

0.0 0.5 1.0 1.5 2.0
50 g RGS Score

Figure 6

Correlation between the time spent on RGS and expression of TRPV1 in the CeA. Pearson correlation
revealed significant correlation between the intensity of TRPV1 and the RGS score in sham-treated (a) (R?
=0.04749, P 0.05) and experimental (b) (R? = 0.3628, P< 0.05) groups
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