Study area and sampling
Small mammals (murid rodents and shrews) were captured using mouse-type snap traps in Tatarstan, Russian Federation (Fig. 1, Table S1). Area type (urban or rural), vegetation (forest or field) and distance from trapping points to the nearest human settlement were recorded. The distinction between forest and field was made based on the UN Food and Agriculture Organization’s criteria24,25. Each administrative division in the Tatarstan was defined to be urban or rural by the Federal Service of State Statistics of Russian Federation26. Based on these criteria, Kazan city and Naberezhnye Chelny city are classified as urban districts and Vysokogorsky district, Yelabuzhsky district, Laishevsky district, Mamadyshsky district, Nizhnekamsky district, Pestrechinsky district and Tukayevsky district are classified as rural districts. Small mammals were captured during the spring and fall periods of 2016 and 2017. Fifty traps were placed in a line every 5 m in one place. Traps were baited and left for one night. Animal suffering was minimized as snap traps cause rapid death in murid rodents and shrews. Each captured small mammal’s species, age, and sex were morphologically identified using a reference guide27, and the animals were then stored at − 20°C until their brains were isolated.
Ethics
All experiments were performed in compliance with relevant Russian and Japanese and institutional laws and guidelines and were approved by the Ministry of Health of the Russian Federation and the Animal Research Committee of Gifu University (Permit Nos. MU 3.1.1029-01, and 17060, respectively). Study was carried out in compliance with the ARRIVE guidelines (https://arriveguidelines.org).
DNA extraction and PCR
Brain tissue samples were prepared as described previously12. Brain samples stored at − 20°С were transferred to a − 86°С deep freezer. Each deep-frozen whole brain sample was homogenized in 1 ml of a 0.9% saline solution. Total DNA was extracted from the brain tissues of each small mammal using a Genomic DNA Purification Kit (Promega, Madison, WI, USA), following the manufacturer’s instructions. Nested PCR was performed with the Takara PCR Amplification Kit (Takara Bio Inc., Foster City, California, USA) according to the manufacturer's instructions. The primer sets and PCR conditions used to detect the B1 gene from T. gondii were those described previously12.
Mapping
Spatial referencing of the sampling sites was conducted using global positioning system navigation with a Garmin eTrex 10 device. Visualization of cartographic data and measurements of the distances from the trapping points to the nearest human settlements were performed using QGIS 3.12 software28. Geodetic coordinates were projected into planar rectangular coordinates in the Universal Transverse Mercator projection on the WGS-84 ellipsoid (Universal Transverse Mercator, zone 39N). The overview map of the European part of Russia was made in the Lambert Conformal Conic Projection. Map coordinates are represented as geodetic coordinates (WGS-84, degrees and minutes north latitude and east longitude). To visualize thematic objects (administrative boundaries, forests, agricultural lands, and water bodies), a set of vector data layers, NextGIS (Russia), was used.
Dataset and statistical analyses
Multivariate logistic regression was performed using the R statistical software package (version 3.6.3)29 to assess the trapping point area (urban or rural), vegetation (forest or field), small mammal species type (alien or non-alien species), age (0–2 months-old juveniles, 3–6 months-old adults or ≧ 6 months old), sex (male or female) and distance from trapping points to the nearest human settlements as risk factors for PCR positivity. According to previous reports14–18, four species, Mi. arvalis, A. flavicollis, A. agrarius, A. uralensis, and three species, My. glareolus, S. araneus and D. nitedula are considered alien and non-alien species, respectively. Quantitative data were replaced with 0 or 1 dummy variables, and age data were replaced by 0, 1 and 2 for juveniles, adults and elders, respectively. Multicollinearity of the explanatory variables was evaluated using Spearman’s coefficient30 calculated using dplyr, FSA and psych packages31–33. None of the Spearman’s coefficients were > 0.6. To find the best fit model, a forward selection procedure was used. Predictive performance and model fitting were assessed using the area under the receiver operating characteristic (ROC) curve, area under the curve (AUC) and corrected Akaike's information criterion (AICc) with Akaike weight (Wi). AICc and Wi were calculated using the MuMIN package34, and the AUC was calculated using the R pROC package35. P-values of < 0.05 were considered statistically significant. The delta method was used to compute the standard errors for the predicted probabilities based on the multinomial logit function36. T. gondii prevalence confidence intervals (95% CI) were estimated based on 468/474 samples (6 samples were excluded from analysis because they lacked information).