221e S.r.l, Padova, Italy. Products Overview. (2020).https://www.221e.com/wp-content/themes/221e-theme/pdf/products_overview.pdf [Accessed in 2020].
Atrsaei, A., Dadashi, F., Mariani, B., Gonzenbach, R., and Aminian, K. (2021). Toward a Remote Assessment of Walking Bout and Speed: Application in Patients With Multiple Sclerosis. IEEE J Biomed Health Inform, 25 (11), 4217–4228, doi: 10.1109/JBHI.2021.3076707.
Bergamini, E., Ligorio, G., Summa, A., Vannozzi, G., Cappozzo, A. and Sabatini, A. M. (2014). Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks. Sensors, 14 (10), 18625–18649, doi: 10.3390/s141018625.
Bertoli, M., et al. (2018). Estimation of spatio‑temporal parameters of gait from magneto‑inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults. Biomed. Eng. Online, 17 (1), 1–14, doi: 10.1186/s12938-018-0488-2.
Bertuletti, S., Cereatti, A., Comotti, D., Caldara, M., and Della Croce, U. (2017). Static and Dynamic Accuracy of an Innovative Miniaturized Wearable Platform for Short Range Distance Measurements for Human Movement Applications. Sensors, 17 (7), 1492, doi: 10.3390/s17071492.
Bertuletti, S., Della Croce, U., and Cereatti, A. (2018). A wearable solution for accurate step detection based on the direct measurement of the inter-foot distance. J. Biomech., 84, 274–277, doi: 10.1016/j.jbiomech.2018.12.039.
Bonci, T., et al. (2022). An algorithm for accurate marker-based gait event detection in healthy and pathological populations during complex motor tasks. Front. bioeng. Biotechnol, 10, 868928, doi: 10.3389/fbioe.2022.868928.
Bonci, T., Keogh, A., Del Din, S., Scott, K., and Mazzà, C. (2020). An Objective Methodology for the Selection of a Device for Continuous Mobility Assessment. Sensors, 20 (22), 6509, doi: 10.3390/s20226509.
Bourgeois, A. B., Mariani, B., Aminian, K., Zambelli, P. Y., and Newman, C. J. (2014). Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. Gait Posture, 39 (1), 436–442, doi: 10.1016/j.gaitpost.2013.08.029.
Buso, V., Hopper, L., Benois-Pineau, J., Plans, P. M., and Mégret, R. (2015). Recognition of Activities of Daily Living in natural “at home” scenario for assessment of Alzheimer's disease patients. IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Turin, Italy, 29 June 2015 - 03 July 2015, doi: 10.1109/ICMEW.2015.7169861.
Caruso, M., et al. (2021). Analysis of the accuracy of ten algorithms for orientation estimation using inertial and magnetic sensing under optimal conditions: One size does not fit all. Sensors, 21 (7), 2543, doi: 10.3390/s21072543.
Caruso, M., Sabatini, A. M., Knaflitz, M., Gazzoni, M., Della Croce, U., and Cereatti, A. (2020). Orientation Estimation Through Magneto-Inertial Sensor Fusion: A Heuristic Approach for Suboptimal Parameters Tuning. IEEE Sens. J., 21 (3), 3408–3419, doi: 10.1109/JSEN.2020.3024806.
Caruso, M., Sabatini, A. M., Knaflitz, M., Della Croce, U., and Cereatti, A. (2021). Extension of the Rigid-Constraint Method for the Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion Algorithms Using Inertial and Magnetic Sensing. Sensors, 21 (18), 6307, doi: 10.3390/s21186307.
Del Din, S., Godfrey, A., Mazzà, C., Lord, S., and Rochester, L. (2016). Free‐living monitoring of Parkinson's disease: Lessons from the field. Mov. Disord., 31 (9), 1293-1313, doi: 10.1002/mds.26718.
Della Croce, U., and Cappozzo, A. (2000). A spot check for estimating stereophotogrammetric errors. Med Biol Eng Comput, 38 (3), 260-266, doi: 10.1007/BF02347045.
Dujmovic, I., et al. (2017). Gait pattern in patients with different multiple sclerosis phenotypes. Mult. Scler. Relat. Disord., 13, 13–20, doi: 10.1016/j.msard.2017.01.012.
Duong, T. T. H., Uher, D., Montes, J., and Zanotto, D. (2022). Ecological Validation of Machine Learning Models for Spatiotemporal Gait Analysis in Free-Living Environments Using Instrumented Insoles. IEEE Robot. Autom. Lett., 7 (4), 10834–10841, doi: 10.1109/LRA.2022.3188895.
El-Sheimy, N., Hou, H., and Niu, X. (2008). Analysis and modeling of inertial sensors using Allan variance. IEEE Trans. Instrum. Meas., 57 (1), 140-149, doi: 10.1109/TIM.2007.908635.
FeetMe Devices. Feetme clinical applications. (2022) https://feetmehealth.com/clinical-research/ [accessed in 2022].
FeetMe Devices. Feetme insoles. (2022). https://feetmehealth.com/insoles/ [accessed in 2022].
Ferraris, F., Grimaldi, U., and Parvis, M. (1995). Procedure for effortless in-field calibration of three-axial rate gyro and accelerometers. Sens. Mater., 7 (5), 311-330.
Full, K., Leutheuser, H., Schlessman, J., Armitage, R., and Eskofier, B. M. (2015). Comparative Study on Classifying Gait With a Single Trunk-Mounted Inertial-Magnetic Measurement Unit. IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge (MA), USA, 09-12 June 2015, doi: 10.1109/BSN.2015.7299375.
Galperin, I., et al. (2019). Parkinsonism and Related Disorders Associations between daily-living physical activity and laboratory-based assessments of motor severity in patients with falls and Parkinson’s disease. Park. Relat. Disord., 62, 85–90, doi: 10.1016/j.parkreldis.2019.01.022.
Gastaldi, L., Agostini, V., Lisco, G., Knaflitz, M., and Tadaro, S. (2015). Comparison between a MIMUs system and a gold standard electromechanical system. Eight Asian Pacific Conference on Biomechanics, Sapporo, Japan, doi: 10.1299/jsmeapbio.2015.8.114.
Giannouli, E., Bock, O., Mellone, S:, and Zijlstra, W. (2016). Mobility in Old Age: Capacity Is Not Performance. BioMed research international, Special Issue, doi: 10.1155/2016/3261567.
Hausdorff, J. M., Ladin, Z., and Wei, J. Y. (2005). Footswitch system for measurement of the temporal parameters of gait. J. Biomech, 28 (3), 347-351, doi: 10.1016/0021-9290(94)00074-E.
Hickey, A., Del Din, S., Rochester, L., and Godfrey, A. (2016). Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis. Physiol Meas, 38 (1), N1, doi: 10.1088/1361-6579/38/1/N1.
Hillel, I., et al. (2019). Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring. Eur. Rev. Aging Phys. Act., 16 (6), 1–12, doi: 10.1186/s11556-019-0214-5.
Hundza, S. R., et al. (2014). Accurate and Reliable Gait Cycle Detection in Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabilitation Eng., 22 (1), 127–137, doi: 10.1109/TNSRE.2013.2282080.
IEEE. IEEE 2700-2017 Standard for Sensor Performance Parameter Definitions. https://standards.ieee.org/ieee/2700/6770/.
Iosa, M., Picerno, P., Paolucci, S., and Morone, G. (2016). Wearable Inertial Sensors for Human Movement Analysis. Expert Rev. Med. Devices, 17 (7), 641-659, doi: 10.1080/17434440.2016.1198694.
Iwakura, M., Okura, K., Shibata, K., and Kawagoshi, A. (2019). Gait characteristics and their associations with clinical outcomes in patients with chronic obstructive pulmonary disease. Gait Posture, 74, 60–65, doi: 10.1016/j.gaitpost.2019.08.012.
Jakob, V., et al. (2021). Validation of a Sensor-Based Gait Analysis System with a Gold-Standard Motion Capture System in Patients with Parkinson’s Disease. Sensors, 21 (22), 7680, doi: 10.3390/s21227680.
Kluge, F., et al. (2021). Consensus based framework for digital mobility monitoring. PLoS One, 16 (8), e0256541, doi: 10.1371/journal.pone.0256541.
Koo, T. K., and Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med., 15 (2), 155–163, doi: 10.1016/j.jcm.2016.02.012.
Laudani, L., Vannozzi, G., Sawacha, Z., Della Croce, U., Cereatti, A., and Macaluso, A. (2013). Association between Physical Activity Levels and Physiological Factors Underlying Mobility in Young, Middle-Aged and Older Individuals Living in a City District. PLoS One, 8 (9), e74227, doi: 10.1371/journal.pone.0074227.
Li, G., Liu, T., and Yi, J. (2018). Wearable Sensor System for Detecting Gait Parameters of Abnormal Gaits : A Feasibility Study. IEEE Sensors Journ., 18 (10), 4234–4241, doi: 10.1109/JSEN.2018.2814994.
Lyons, G. M., Culhane, K. M., Hilton, D., Grace, P. A., and Lyons, D. (2005). A description of an accelerometer-based mobility monitoring technique. Med Eng Phys., 27 (6), 497–504, doi: 10.1016/j.medengphy.2004.11.006.
Madgwick, S. O. H., Harrison, A. J. L., and Vaidyanathan, R. (2011). Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int. Conf. Rehabil. Robot., Zurich, Switzerland, 2011, 29 June 2011 - 01 July 2011, doi: 10.1109/ICORR.2011.5975346.
Martindale, C. F., Sprager, S., and Eskofier, B. M. (2019). Hidden Markov model-based smart annotation for benchmark cyclic activity recognition database using wearables. Sensors, 19 (8), 1820, doi: 10.3390/s19081820.
Mazzà, C., et al. (2021). Technical validation of real-world monitoring of gait: a multicentric observational study. BMJ Open, 11 (12), e050785, doi: 10.1136/bmjopen-2021-050785.
Micó-Amigo, M. E., et al. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium. Research Square. (2022) Available at: https://www.researchsquare.com/article/rs-2088115/v1 , doi: 10.21203/rs.3.rs-2088115/v1
Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., and Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth., 22 (1), 67-72, doi: 10.4103/aca.ACA_157_18.
Mobbs, R. J., et al. (2022). Gait metrics analysis utilizing single-point inertial measurement units : a systematic review. Mhealth, 8 (9), 0–2, doi: 10.21037/mhealth-21-17.
Mobilise-D. (2019). Mobilise-D Project, https://www.mobilise-d.eu/.
Nez, A., Fradet, L., Laguillaumie, P., Monnet, T., and Lacouture, P. (2016). Comparison of calibration methods for accelerometers used in human motion analysis. Med. Eng. Phys., 38 (11), 1289–1299, doi: 10.1016/j.medengphy.2016.08.004.
NURVV, Nurv Run Smart Insoles. (2022). https://www.nurvv.com/en-gb/products/nurvv-run-insoles-trackers/ [accessed in 2022]..
Pacini, G., Bisi, M. C., Stagni, R., and Fantozzi, S. (2018). Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture, 66, 76–82, doi: 10.1016/j.gaitpost.2018.08.025.
Panizzolo, F. A., et al. (2014). Gait analysis in chronic heart failure: The calf as a locus of impaired walking capacity. J. Biomech., 47 (15), 3719–3725, doi: 10.1016/j.jbiomech.2014.09.015.
Peruzzi, A., Della Croce, U., and Cereatti, A. (2011). Estimation of stride length in level walking using an inertial measurement unit attached to the foot: A validation of the zero velocity assumption during stance. J. Biomech., 44 (10), 1991–1994, doi: 10.1016/j.jbiomech.2011.04.035.
Picerno, P., Cereatti, A., and Cappozzo, A. (2011). A spot check for assessing static orientation consistency of inertial and magnetic sensing units. Gait Posture, 33 (3), 373–378, doi: 10.1016/j.gaitpost.2009.07.072.
Polhemus, A., et al. (2021). Walking on common ground: a cross-disciplinary scoping review on the clinical utility of digital mobility outcomes. npj Digit. Med, 4 (1), 1-14, doi: 10.1038/s41746-021-00513-5.
Refai, M. I. M., van Beijnum, B. J. F., Buurke, J. H., and Veltink, P. H. (2018). Gait and dynamic balance sensing using wearable foot sensors. IEEE Trans. Neural Syst. Rehabil. Eng., 27 (2), 218-227, doi: 10.1109/TNSRE.2018.2885309.
Reggi, L., Palmerini, L., Chiari, L., and Mellone, S. (2022). Real-World Walking Speed Assessment Using a Mass-Market RTK-GNSS Receiver. 501, 1–9, doi: 10.3389/fbioe.2022.87320.
Romijnders, R., Warmerdam, E., Hansen, C., Welzel, J., Schmidt, G., and Maetzler, W. (2021). Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson’s Disease patients. J. Neuroeng. Rehabil, 18 (1), 1-10, doi: 10.1186/s12984-021-00828-0.
Rossanigo, R., Bertuletti, S., Caruso, M., Knaflitz, M., Della Croce, U., and Cereatti, A. (2020). Estimation of the base of support during gait with an unobtrusive wearable system. Proceedings of GNB, 2020.
Rossanigo, R., Caruso, M., Salis, F., Bertuletti, S., Della Croce, U., and Cereatti, A. (2021). An Optimal Procedure for Stride Length Estimation Using Foot-Mounted Magneto-Inertial Measurement Units. IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23-25 June 2021, doi: 10.1109/MeMeA52024.2021.9478604.
Roth, N., et al. (2021). Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson’s disease patients. J. Neuroeng. Rehabilitation, 18 (1), 1-15, doi: 10.1186/s12984-021-00883-7.
Roth, N., Küderle, A., Prossel, D., Gassner, H., Eskofier, B. M., and Kluge, F. (2021). An Inertial Sensor-Based Gait Analysis Pipeline for the Assessment of Real-World Stair Ambulation Parameters. Sensors, 21 (19), 6559, doi: 10.3390/s21196559.
Roth, N., Martindale, C. F., Gaßner, H., Kohl, Z., and Klucken, J. (2018). Synchronized Sensor Insoles for Clinical Gait Analysis in Home-Monitoring Applications. Curr. Dir. Biomed. Eng., 4 (1), 433–437, doi: 10.1515/cdbme-2018-0103.
Sabatini, A. M., Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Med. Biol. Eng. Comput., 43 (1), 94-101, doi: 10.1007/BF02345128.
Salis, F., Bertuletti, S., Bonci, T., Della Croce, U., Mazzà, C., and Cereatti, A. (2021). A method for gait events detection based on low spatial resolution pressure insoles data. J. Biomech, 127, 110687, doi: 10.1016/j.jbiomech.2021.110687.
Salis, F., et al. (2021). A wearable multi-sensor system for real world gait analysis. IEEE 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 01-05 Nov 2021, doi: 10.1109/EMBC46164.2021.9630392.
Schepers, H. M., Van Asseldonk, E. H., Buurke, J. H., and Veltink, P. H. (2009). Ambulatory estimation of center of mass displacement during walking. IEEE. Trans. Biomed. Eng., 56 (4), 1189-1195, doi: 10.1109/TBME.2008.2011059.
Scott, K., et al. (2021). A Quality Control Check to Ensure Comparability of Stereophotogrammetric Data between Sessions and Systems. Sensors, 21 (24), 8223, doi: 10.3390/s21248223.
Scott, K., et al. (2022). Design and validation of a multi-task , multi-phase protocol for real-world gait simulation. J. NeuroEngineering Rehabil, 19, 141, doi: 10.1186/s12984-022-01116-1.
Skog, I., Nilsson, J., and Peter, H. (2010). Evaluation of Zero-Velocity Detectors for Foot-Mounted Inertial Navigation Systems. Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland, 2010, 15-17 Sept 2010, doi: 10.1109/IPIN.2010.5646936.
Skog, I., Peter, H., Nilsson, J., and Rantakokko, J. O. (2010). Zero-Velocity Detection — An Algorithm Evaluation. IEEE. Trans. Biomed. Eng, 57 (11), 2657–2666, doi: 10.1109/TBME.2010.2060723.
Sofuwa, O., Nieuwboer, A., Desloovere, K., Willems, A. M., Chavret, F., and Jonkers, I. (2005). Quantitative gait analysis in Parkinson’s disease: comparison with a healthy control group. Arch Phys Med Rehabil, 86 (5), 1007-1013, doi: 10.1016/j.apmr.2004.08.012.
Stančin, S., and Tomažič, S. (2014). Time-and computation-efficient calibration of MEMS 3D accelerometers and gyroscopes. Sensors, 14 (8), 14885-14915, doi: 10.3390/s140814885.
Storm, F. A., Buckley, C. J. and Mazzà, C. (2016). Gait event detection in laboratory and real-life settings: Accuracy of ankle and waist sensor-based methods. Gait Posture, 50, 42–46, doi: 10.1016/j.gaitpost.2016.08.012.
Tang, W., Fulk, G., Zeigler, S., Zhang, T., and Sazonov, E. (2019). Estimating Berg Balance Scale and Mini Balance Evaluation System Test Scores by Using Wearable Shoe Sensors. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 19-22 May 2019, doi: 10.1109/BHI.2019.8834631.
Terrier, P., Ladetto, Q., Merminod, B., and Schutz, Y. (2000). High-precision satellite positioning system as a new tool to study the biomechanics of human locomotion. J. Biomech., 33 (12), 1717–1722, doi: 10.1016/S0021-9290(00)00133-0.
Thingstad, P., Egerton, T., Ihlen, E. F., Taraldsen, K., Moe-nilssen, R., and Helbostad, J. L. (2015). Identification of gait domains and key gait variables following hip fracture. BMC Geriatr., 15 (1), 1–7, doi: 10.1186/s12877-015-0147-4.
Trojaniello, D., et al. (2014). Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. J. Neuroeng. Rehabilitation, 11 (1), 1–12, doi: 10.1186/1743-0003-11-152.
Unsal, D., and Demirbas, K. (2012). Estimation of deterministic and stochastic IMU error parameters. IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA, 2012, 23-26 Apr 2012, doi: 10.1109/PLANS.2012.6236828.
Van Meulen, F. B., Weenk, D., Buurke, J. H., Van Beijnum, B. F., and Veltink, P. H. (2016). Ambulatory assessment of walking balance after stroke using instrumented shoes. J. Neuroeng. Rehabil., 13 (48), 1–10, doi: 10.1186/s12984-016-0146-5.
Viceconti, M., et al. (2020). Toward a Regulatory Qualification of Real-World Mobility Performance Biomarkers in Parkinson’s Patients Using Digital Mobility Outcomes. Sensors, 20 (20), 5920, doi: 10.3390/s20205920.
Walther, B. A., and Moore, J. L. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28 (6), 815-829, doi: 10.1111/j.2005.0906-7590.04112.x.
Wang, C., Wang, X., Long, Z., Yuan, J., and Qian, Y. (2016). Estimation of Temporal Gait Parameters Using a Wearable Microphone-Sensor-Based System. Sensors, 16 (12), 2167, doi: 10.3390/s16122167.
World Health Organization. (2001). International Classification of Functioning, Disability and Health: ICF.
Yang, S., Zhang, J., Novak, A. C., Brouwer, B., and Li, Q. (2013). Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors. Gait Posture, 37 (3), 354–358, doi: 10.1016/j.gaitpost.2012.07.032.
Zhou, L., et al. (2020). Validation of an IMU gait analysis algorithm for gait monitoring in daily life situations. The 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20-24 Jul. 2020, doi: 10.1109/EMBC44109.2020.9176827.
Zijlstra, W., and Hof, A. L. (2003). Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture, 18 (2), 1–10, doi: 10.1016/S0966-6362(02)00190-X.