[1]. Witjes, J.A., et al., European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur Urol, 2021. 79(1): p. 82-104.
[2]. Fernandez, M.I., et al., Epidemiology, prevention, screening, diagnosis, and evaluation: update of the ICUD-SIU joint consultation on bladder cancer. World J Urol, 2019. 37(1): p. 3-13.
[3]. Gakis, G., et al., ICUD-EAU International Consultation on Bladder Cancer 2012: Radical cystectomy and bladder preservation for muscle-invasive urothelial carcinoma of the bladder. Eur Urol, 2013. 63(1): p. 45-57.
[4]. Spiess, P.E., et al., Bladder Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2017. 15(10): p. 1240-1267.
[5]. Sternberg, C.N. and R. Sylvester, Thoughts on a systematic review and meta-analysis of adjuvant chemotherapy in muscle-invasive bladder cancer. Eur Urol, 2014. 66(1): p. 55-6.
[6]. Yuh, B.E., et al., Pooled analysis of clinical outcomes with neoadjuvant cisplatin and gemcitabine chemotherapy for muscle invasive bladder cancer. J Urol, 2013. 189(5): p. 1682-6.
[7]. Spranger, S. and T.F. Gajewski, Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer, 2018. 18(3): p. 139-147.
[8]. Choudhury, N.J., et al., Low T-cell Receptor Diversity, High Somatic Mutation Burden, and High Neoantigen Load as Predictors of Clinical Outcome in Muscle-invasive Bladder Cancer. Eur Urol Focus, 2016. 2(4): p. 445-452.
[9]. Kandoth, C., et al., Mutational landscape and significance across 12 major cancer types. Nature, 2013. 502(7471): p. 333-339.
[10]. Tripathi, A. and E.R. Plimack, Immunotherapy for Urothelial Carcinoma: Current Evidence and Future Directions. Curr Urol Rep, 2018. 19(12): p. 109.
[11]. Powles, T., et al., Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma: Updated Results From a Phase 1/2 Open-label Study. JAMA Oncol, 2017. 3(9): p. e172411.
[12]. Sharma, P., et al., Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol, 2017. 18(3): p. 312-322.
[13]. Vlachostergios, P.J. and B.M. Faltas, The molecular limitations of biomarker research in bladder cancer. World J Urol, 2019. 37(5): p. 837-848.
[14]. Kavanagh, B., et al., CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood, 2008. 112(4): p. 1175-83.
[15]. Allard, B., et al., Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol, 2016. 29: p. 7-16.
[16]. Wang, L., et al., CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest, 2011. 121(6): p. 2371-82.
[17]. Allard, D., et al., Targeting the CD73-adenosine axis in immuno-oncology. Immunol Lett, 2019. 205: p. 31-39.
[18]. Leone, R.D. and L.A. Emens, Targeting adenosine for cancer immunotherapy. J Immunother Cancer, 2018. 6(1): p. 57.
[19]. Allard, B., et al., Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res, 2013. 19(20): p. 5626-35.
[20]. Siu, L.L., et al., Preliminary phase 1 profile of BMS-986179, an anti-CD73 antibody, in combination with nivolumab in patients with advanced solid tumors. CANCER RESEARCH, 2018. 78S(13).
[21]. Stagg, J., et al., Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A, 2010. 107(4): p. 1547-52.
[22]. Lawson, K.V., et al., Discovery of AB680: A Potent and Selective Inhibitor of CD73. J Med Chem, 2020. 63(20): p. 11448-11468.
[23]. Choo, Y.W., et al., M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. ACS Nano, 2018. 12(9): p. 8977-8993.
[24]. Molinaro, R., et al., Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater, 2016. 15(9): p. 1037-46.
[25]. Roth, J.C., D.T. Curiel and L. Pereboeva, Cell vehicle targeting strategies. Gene Ther, 2008. 15(10): p. 716-29.
[26]. Fan, J., et al., Generation of Small RNA-Modulated Exosome Mimetics for Bone Regeneration. ACS Nano, 2020. 14(9): p. 11973-11984.
[27]. Jo, W., et al., Large-scale generation of cell-derived nanovesicles. Nanoscale, 2014. 6(20): p. 12056-64.
[28]. Lin, Q., et al., Exosome-like nanoplatform modified with targeting ligand improves anti-cancer and anti-inflammation effects of imperialine. J Control Release, 2019. 311-312: p. 104-116.
[29]. Li, Y., et al., Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res, 2015. 25(8): p. 981-4.
[30]. Rayamajhi, S., et al., Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater, 2019. 94: p. 482-494.
[31]. Jadus, M.R., et al., Macrophages can recognize and kill tumor cells bearing the membrane isoform of macrophage colony-stimulating factor. Blood, 1996. 87(12): p. 5232-41.
[32]. Jang, S.C., et al., Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 2013. 7(9): p. 7698-710.
[33]. Lunavat, T.R., et al., RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer. Biomaterials, 2016. 102: p. 231-8.
[34]. Abdolahpour, S., et al., Targeted delivery of doxorubicin into tumor cells by nanostructured lipid carriers conjugated to anti-EGFRvIII monoclonal antibody. Artif Cells Nanomed Biotechnol, 2018. 46(1): p. 89-94.
[35]. Wang, R., et al., Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine, 2012. 7: p. 4185-98.
[36]. Ye, J., et al., Vitamin E-rich Nanoemulsion Enhances the Antitumor Efficacy of Low-Dose Paclitaxel by Driving Th1 Immune Response. Pharm Res, 2017. 34(6): p. 1244-1254.
[37]. Roy, A., et al., Anticancer and immunostimulatory activity by conjugate of paclitaxel and non-toxic derivative of LPS for combined chemo-immunotherapy. Pharm Res, 2012. 29(8): p. 2294-309.
[38]. Vandeveer, A.J., et al., Systemic Immunotherapy of Non-Muscle Invasive Mouse Bladder Cancer with Avelumab, an Anti-PD-L1 Immune Checkpoint Inhibitor. Cancer Immunol Res, 2016. 4(5): p. 452-62.
[39]. Wang, L., et al., A novel alpha-enolase-targeted drug delivery system for high efficacy prostate cancer therapy. Nanoscale, 2018. 10(28): p. 13673-13683.
[40]. Guo, L., et al., Targeted delivery of celastrol to mesangial cells is effective against mesangioproliferative glomerulonephritis. Nat Commun, 2017. 8(1): p. 878.
[41]. Conner, S.D. and S.L. Schmid, Regulated portals of entry into the cell. Nature, 2003. 422(6927): p. 37-44.
[42]. Gong, C., et al., Co-delivery of autophagy inhibitor ATG7 siRNA and docetaxel for breast cancer treatment. J Control Release, 2017. 266: p. 272-286.
[43]. Kalimuthu, S., et al., A New Approach for Loading Anticancer Drugs Into Mesenchymal Stem Cell-Derived Exosome Mimetics for Cancer Therapy. Front Pharmacol, 2018. 9: p. 1116.
[44]. Corbet, C. and O. Feron, Tumour acidosis: from the passenger to the driver's seat. Nat Rev Cancer, 2017. 17(10): p. 577-593.
[45]. Tian, T., et al., Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem, 2014. 289(32): p. 22258-67.
[46]. Xu, S., et al., PD-L1 monoclonal antibody-conjugated nanoparticles enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. Int J Nanomedicine, 2019. 14: p. 17-32.
[47]. Hatfield, S.M. and M. Sitkovsky, A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1alpha driven immunosuppression and improve immunotherapies of cancer. Curr Opin Pharmacol, 2016. 29: p. 90-6.
[48]. Ohta, A., et al., A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A, 2006. 103(35): p. 13132-7.
[49]. Cibrian, D. and F. Sanchez-Madrid, CD69: from activation marker to metabolic gatekeeper. Eur J Immunol, 2017. 47(6): p. 946-953.
[50]. Ruoslahti, E., S.N. Bhatia and M.J. Sailor, Targeting of drugs and nanoparticles to tumors. J Cell Biol, 2010. 188(6): p. 759-68.
[51]. Tej, G., K. Neogi and P.K. Nayak, Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibody. Int Immunopharmacol, 2019. 77: p. 106002.
[52]. Ding, W., et al., Ki-67 is an independent indicator in non-muscle invasive bladder cancer (NMIBC); combination of EORTC risk scores and Ki-67 expression could improve the risk stratification of NMIBC. Urol Oncol, 2014. 32(1): p. 42.e13-9.
[53]. Bullwinkel, J., et al., Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol, 2006. 206(3): p. 624-35.
[54]. Zou, W., J.D. Wolchok and L. Chen, PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med, 2016. 8(328): p. 328rv4.
[55]. Flores-Santibanez, F., et al., CD73-mediated adenosine production promotes stem cell-like properties in mouse Tc17 cells. Immunology, 2015. 146(4): p. 582-94.
[56]. Bono, M.R., et al., CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS Lett, 2015. 589(22): p. 3454-60.
[57]. Saito, R., et al., Molecular Subtype-Specific Immunocompetent Models of High-Grade Urothelial Carcinoma Reveal Differential Neoantigen Expression and Response to Immunotherapy. Cancer Res, 2018. 78(14): p. 3954-3968.
[58]. Luckheeram, R.V., et al., CD4(+)T cells: differentiation and functions. Clin Dev Immunol, 2012. 2012: p. 925135.