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Abstract 

Oxysterols (OHCs) are hydroxylated cholesterol metabolites that play ubiquitous roles in health 

and disease.  Due to the non-covalent nature of their interactions and unique partitioning in membranes, the 

analysis of live-cell, proteome-wide interactions of OHCs remains an unmet challenge.  In this Resource, 

we present a structurally precise chemoproteomics probe for the osteogenic molecule 20(S)-

hydroxycholesterol (20(S)-OHC) and provide a map of its proteome-wide targets in the membranes of 

living cells.  Our target catalogue consolidates diverse OHC ontologies and demonstrates that OHC-

interacting proteins cluster with specific processes in immune response and cancer.  Competition 

experiments reveal that 20(S)-OHC is a chemo-, regio-, and stereoselective ligand for the protein Tmem97 

(σ2 receptor), enabling molecular reconstruction of the Tmem97:20(S)-OHC binding site.  Our results 

demonstrate that multiplexed, quantitative analysis of cellular target engagement can expose new 

dimensions of OHC activity and identify actionable targets for molecular therapy. 

 

Introduction 

Cholesterol is the most complex metabolite produced de novo by humans.1  It serves as a substrate 

for the biosynthesis of an ediface of signaling molecules,2 including steroid hormones,2 glucocorticoids,3 

bile acids,4 and vitamin D.5  Over one hundred human enzymes are dedicated to modifying cholesterol 

structure, whereas no catabolic enzymes are available to derive energy from its breakdown.  Instead, the 

human body expresses a multitude of receptors dedicated to cholesterol metabolites that control 

steroidogenesis,2 respiration,3 gut health,6 vision,7 and a repertoire of other essential processes.  The 

gateway from cholesterol to all of these metabolites is a class of intermediates known as oxysterols (OHCs): 

specific mono-, di-, and polyhydroxylated cholesterol molecules that are barcoded by the configuration of 
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their oxygen atoms.8  Although they serve as precursors to hundreds of metabolite structures, oxysterols are 

maintained at fleetingly low concentrations in the body, and are rapidly converted to more metabolically 

stable products.9  A growing body of evidence has revealed that these barcoded, ephemeral intermediates 

also function as sensitive, highly potent signaling molecules in critical processes such as 

neurotransmission,10 developmental signaling,11 and the innate immune response,12 where temporal control 

and specificity are paramount.  Despite the fact that the chemical structures of OHCs directly inform their 

receptor preferences and biogenesis, only a fraction of the proteins that interact with these molecules is 

known.  To tap into their signaling functions and trace the circuits that regulate their formation, 

chemoproteomic technologies to fingerprint the cellular targets of specific OHC structures are required. 

An accurate portrait of proteome-wide OHC interactions in live cells requires that 

chemoproteomics probes preserve the oxygenation pattern of the natural congener as well as 

physiochemical properties for native membrane partitioning.13,14,15,16  In this work, we describe our design, 

synthesis, and application of a structurally precise photoaffinity probe for 20(S)-hydroxycholesterol (20(S)-

OHC), an agonist of the developmental signaling protein Smoothened.17,18  Using this probe, we perform 

an unbiased analysis of live-cell 20(S)-OHC targets in the membrane proteome of mammalian cells.  Our 

data reveals over 100 enriched 20(S)-OHC interactors that cluster into discrete molecular functions.  We 

elucidate a set of protein interactors that competably engage 20(S)-OHC and show that the cancer biomarker 

protein Tmem97 is a regio-and stereoselective 20(S)-OHC target.  Our work demonstrates the potential for 

chemoproteomic fingerprints to translate between the chemical structure of OHC signaling molecules and 

their biological functions. 

 

Design and synthesis of probe 1 

Chemoproteomics strategies for identifying cellular OHC interactions face a unique combination 

of challenges.  In live cells, subtle features of chemical structure dictate the membrane environments that 

OHCs traverse and the targets to which they are exposed.13,14,15,16,19  To capture the full complement of OHC 

interactions and the “fingerprint” of their cellular targets, chemoproteomics probes for cellular OHCs must 

preserve native membrane properties, retain oxygenation patterns recognized by specific receptors, and 

incorporate functionality to capture and identify live-cell targets.  To address these requirements, we sought 

to modify natural OHC structures with a diazirine for live-cell photocrosslinking and an alkyne for 

downstream analysis.  The diazirene functional group is benign to live cells, inert under ambient light, and 

can be photoactivated by 368 nm (long UV) light to generate a reactive carbene that covalently crosslinks 

protein residues within a single-digit angstrom radius.20,21,22  Diazirines in general are favored for their small 

size, bio-orthogonality, and low background labeling; for OHC probes in particular, this non-polar 

functional group can be introduced at a variety of positions without significantly influencing OHC 

2



membrane behavior.  Alkynes likewise provide sterically minimal, biorthogonal modifications for “click”-

based appendage of crosslinked proteins to virtually any affinity tag (e.g. biotin), fluorescent reporter, or 

desired functionality.23  The complementary reactivities of diazirenes and alkynes underlie their emerging 

popularity as chemoproteomics handles and are especially suited to OHC probes. 

We first chose to fashion a bifunctional probe for the OHC metabolite 20(S)-OHC.  This molecule 

has been detected in the brain and placenta,24 and functions as a potent osteogenitor25 and teratogen.26   

Significantly, in addition to binding other proteins, 20(S)-OHC is a stereospecific ligand for the 7-

transmembrane receptor Smoothened (Smo), a gatekeeper in developmental Hedgehog signaling.17,18  

Notably, the 20(R) epimer of this molecule is inactive at Smo.  Stimulation of endogenous Smo activity by 

20(S)-OHC and congeners can be assayed in NIH-3T3 cells, providing a platform for us to evaluate the 

biological activity of a 20(S)-OHC probe relative to the parent molecule.   

To enable an unbiased analysis of 20(S)-OHC targets in cells, we added functional handles that 

preserved the C20(S)-OHC pharmacophore, the α- and β-face topologies of the tetracyclic ring system, the 

accessible C3-hydroxyl group, and the length and hydrophobicity of the C17 side chain (Fig. 1a).  

Synthetically, we envisioned the use of an intramolecular C-H activation for conversion of the C19 methyl 

group to an alkyne27 and a stereoselective Grignard addition to introduce a diazirine side chain to a C17 

methyl ketone.28  In the forward sense, stereoselective hydrobromination of pregnenolone acetate29 and 

photoinduced C-H activation of the C19 methyl group in 327 provided ether 4 in 76% yield over two steps 

(Fig. 1b). Elaboration of the C19 primary alcohol to the alkyne via reductive elimination by elemental zinc 

in acetic acid, pyridinium chlorochromate oxidation to the C19 aldehyde, and homologation with the 

Seyferth-Glibert reagent30 provided the key intermediate 6. Gratifyingly, Grignard addition of 7 to 6 

afforded exclusively the 20(S) alcohol 8, whereupon ketone deprotection and one-pot introduction of the 

C25 diazirine produced bifunctional photoaffinity probe 1 as an air- and ambient light-stable solid.  In 

addition to furnishing 1, alkyne intermediate 6 represents a precursor to a library of bifunctional probes for 

side-chain oxysterols. 

The structure of 1 was unambiguously established by 1D and 2D NMR spectroscopy.  The presence 

of the diazirine was confirmed by a characteristic infrared N=N stretching frequency at 1644 cm-1 and 

ultraviolet absorption at 353 nm.  Irradiation of 1 in organic solvent at 368 nm resulted in progressive 

extrusion of N2 with a half-life of 1.34 min (Fig. 1c).  Probe 1 differs from the parent structure by only 4 

atoms, ∼1.5 Å in any dimension, and a logP of 0.48, and can be photoactivated to generate a reactive 

carbene for protein crosslinking. 

To ensure that 1 preserves biological activity of 20(S)-OHC, we assessed its ability to activate the 

7-transmembrane protein Smoothened (Smo) in Shh-LIGHT2 cells,31 a mouse embryonic fibroblast line 

that bears a luminescent reporter of Smo-regulated Gli transcription (Fig. 1d).  Commensurate with the 
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known (S) stereoselectivity of Smo:20-OHC binding, 20(S)-OHC induced reporter activity with an EC50 of 

8.4 µM, whereas 20(R)-OHC was inactive.  Probe 1 induced Smo activity with an EC50 of 1.2 µM and an 

enhanced magnitude of response, demonstrating that 1 retains activity at Smo.  Differences in efficacy and 

magnitude of response may arise due to solubility and/or membrane properties introduced by the probe 

functionalities, underscoring the sensitivity of certain OHC activities to subtle changes in structure.  To 

assess biochemical engagement between 1 and Smo, we photocrosslinked 1 to YFP-Smo expressed in 

HEK293T cells and isolated Smo protein using a GFP/YFP nanobody (Fig. 1e).  Click ligation of a biotin 

handle and visualization of crosslinked protein revealed that Smo, but not overexpressed GFP, was 

efficiently labeled by 1.  These studies established that 1 retains activity at a stereospecific OHC receptor 

and can selectively crosslink target proteins in live cells, supporting its utility as chemoproteomics probe 

to map live-cell 20(S)-OHC interactions. 

 

Establishment of OHC target labeling in live cells 

To quantitatively catalogue the protein fingerprint interaction of 20(S)-OHC in live cells, we 

established conditions for live cell engagement, photochemical crosslinking, and biorthogonal tagging of 

target proteins (Fig. 2a).  We performed these experiments in NIH-3T3 cells, which show an endogenous 

response to Smo activation and serve as a model to study osteogenesis32 and embryogenesis.33  For live cell 

engagement, we used an incubation time of 30 min to minimize effects of OHC-induced protein expression 

or degradation.34,35  To photocrosslink target proteins, we removed unbound probe and irradiated cells on 

ice at 368 nm for 5 min.  To label crosslinked proteins, we lysed cells and performed a click reaction to 

ligate a TAMRA fluorophore to the alkyne handle in 1. 

SDS page analysis of labeled proteins revealed a discrete set of bands that appeared in a probe-, 

UV-, and copper-dependent manner, indicating that they represented 1-crosslinked target proteins (Fig. 2b).  

Cell fractionation revealed that the majority of labeled proteins, including prominent bands at 

approximately 13 kDa, 21 kDa, and 37 kDa, appeared exclusively in the membrane fraction (Fig. 2c).  To 

focus on these enriched targets and identify novel 20(S)-OHC interactors in the membrane proteome, we 

employed this fractionation method for remainder of our experiments.  Analysis of the membrane proteome 

demonstrated these bands were labeled in a manner that showed good signal-to-background at 1 µM (Fig. 

2d).  Competition with unlabeled 20(S)-OHC revealed that the 21 kDa band was competable in a dose-

dependent manner, showing 85% reduction in signal at a competitor concentration of 50 µM (Fig. 2e).  The 

ability to label membrane proteins in a probe, UV, and click catalyst-dependent fashion and to identify 

proteins dose-dependently competed by 20(S)-OHC established the utility of 1 as a live cell 

chemoproteomics probe. 
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Analysis of enriched OHC targets 

To profile the entire complement of 1 labeling in the membrane proteome, we replaced the TAMRA 

azide in the click reaction with a biotin azide to label crosslinked proteins.  A survey of biotin azide reagents 

revealed superior labeling with a copper-chelating biotin picolyl azide,36 which we therefore used in 

subsequent analysis.  To isolate crosslinked proteins using streptavidin enrichment, we removed excess 

biotin through acetone precipitation, resolubilized the membrane proteome in SDS/Igepal buffer, and 

isolated biotinylated proteins on streptavidin agarose beads (Fig. 3a).  SDS-PAGE and Western blot 

analysis using streptavidin-conjugated IR dye revealed that bands at 13, 21, and 37 kDa were effectively 

isolated using this protocol, whereas Smo was inefficiently solubilized in SDS/Igepal detergent (Fig. S1).  

For global target profiling, we used this protocol in the presence and absence of 1 µM 1 at a normalized 

concentration of 0.01% DMSO.  On-bead digestion of streptavidin-enriched proteins and tandem isotope 

labeling of replicate samples enabled multiplexed real-time search-enabled MS3-based mass spectrometry 

analysis (RTS-SPS-MS3)37 of 1 interactors in the membrane proteome. 

Our results revealed 12 proteins that were enriched by 25-fold relative to DMSO alone, and 106 

proteins enriched by 5- to 25-fold at a p-value of < 0.002 (Fig. 3b).  Comparison with transcript levels from 

RNA-seq analysis38 revealed no significant correlation between target protein enrichment and expression, 

indicating that enhancement was not solely a reflection of abundance (Fig. S2c).  The most enriched set 

consisted of proteins biochemically established to bind OHCs (NPC139,40 and Cav141), cholesterol-binding 

proteins (Vdac142,43), and proteins directly involved in cholesterol homeostasis (Tmem9744).  The set also 

included metabolic proteins that act on sterol substrates (Ldah,45 Ephx146,47) or participate in redox 

complexes associated with cholesterol biosynthesis (Vkorc1l1).48 Three of the proteins (Nptn, Bsg49,50 

Endod151) function as adaptors that control trafficking and activity of protein complexes in specialized 

membranes. Performing our affinity enrichment protocol using label-free instead of TMT analysis revealed 

a nearly identical target profile with respect to identity and enrichment, demonstrating that the method of 

quantification did not significantly influence the target set (Fig. S2a,b). 

A key aspect of OHC function involves their unique effect on membrane proteins sensitive to 

cholesterol content.52  Protein-protein interactions, membrane shape and curvature, and various processes 

in internalization, secretion, and vesicular trafficking are sensitive to infiltration of OHCs that disrupt 

cholesterol-rich environments and increase the fluidity of local membranes.13,14,15,16  Recent studies have 

demonstrated that signal transduction by GPCRs, cytokine receptors, and ion channels are especially 

sensitive to disruptive OHC interactions.53  Accordingly, network analysis of OHC targets can reveal 

interactions, membrane topologies, and cellular circuits that are responsive to OHCs.  To identify cellular 

locations, processes, and diseases associated with the 1 interaction fingerprint, we performed Gene Set 

Enrichment Analysis (GSEA) using 1-enriched proteins.54  Analysis using the Gene Ontology (GO) gene 
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set revealed a top list of 15 GO terms for cellular components, molecular functions, and biological processes 

with an FDR of < 0.1 (Fig. 3c).  As a testament to the stringency of our fractionation protocol, membrane 

organelles and subcompartments dominated the cellular component terms for 1-binding proteins.  Among 

the most highly enriched membrane components were the Golgi apparatus and plasma membrane-ER 

membrane networks, consistent with the observed localization of 20(S)-OHC to the Golgi and perinuclear 

regions,55 and in contrast to the predominant plasma membrane localization of cholesterol itself.56,5758  

Likewise, protein interactors of 1 were associated with GO molecular functions that involved molecular 

signal transduction and transport across the membrane.  The most highly represented GO biological 

processes included membrane lipid metabolism and sphingolipid metabolism in particular, in line with the 

observation that OHCs posttranslationally enhance the activity of enzymes involved in sphingomyelin 

biosynthesis.59 

To identify associations between 1-binding proteins and processes in human health and disease, we 

performed GSEA using the immunologic and oncogenic signature gene sets (Fig. 3d,e).  The immunologic 

gene set with the highest representation of 1-enriched targets was 

GSE23505_IL6_IL1_VS_IL6_IL1_IL23_TREATED_CD4_TCELL_DN (NES =2.92 , FDR = 0.009).  

This gene set is downregulated in ROR𝛾-dependent, TGFβ-independent initiation of CD4+T cell 

differentiation into Th17 helper cells.60  Overlapping sets of signature genes and 1-enriched proteins raises 

the possibility that OHCs may directly intervene in this mechanism of immune cell differentiation and 

associated autoimmune disease.  The oncogenic gene set containing the most 1-enriched targets was 

TBK1.DF_UP (NES = 2.14, FDR = 0.071), a set of genes upregulated by the kinase TANK binding kinase 

1 in KRAS-mutant lung adenocarcinoma cells.61  Since targeting of TBK1 in KRAS mutant cancer cells is 

synthetically lethal, inhibition of OHC-coordinated processes in these cells may represent an avenue for the 

treatment of refractory KRAS mutant cancers.  The identification of specific processes in immune system 

function and cancer signaling networks that integrate OHCs highlights new opportunities for drug design 

and therapeutic targeting. 

 

Identification of enriched and competable OHC targets 

Cellular OHCs interact with both high- and low-affinity targets to effect their biological functions.  

In live cells, competability can arise due to structure-specific ligand displacement, differential binding 

kinetics, or cell-specific phenomena such as receptor populations and local concentrations.  We next sought 

to determine which live-cell OHC interacting proteins could be out-competed by unlabeled 20(S)-OHC.  To 

optimize the competability of 20(S)-OHC interactions, we focused on conditions that reduced non-specific 

labeling and enhanced sensitivity to competition.  Co-application of 0.5 mM MβCD with 1 µM 1 in the 

presence or absence of 50 µM 20(S)-OHC competitor reproducibly solubilized all sterols and provided 
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robust competition of the 21 kDa band identified by in-gel analysis (Fig. 2e).  Because MβCD can perturb 

cellular cholesterol content, we identified an MβCD concentration that preserved equal intensities of non-

competable bands in the presence and absence of competitor (Fig. S3a).62 

Our competition experiments included three conditions, namely 1 µM 1 alone, 1 µM 1 + 50 µM 

20(S)-OHC competitor, and vehicle alone at a constant concentration of 0.5 mM MβCD and 0.01% DMSO.  

Triplicate experiments for each condition entailed live cell incubation, photoinduced target crosslinking, 

lysis, membrane isolation, and click-based tagging of crosslinked proteins with biotin (Fig. 4a).  

Streptavidin enrichment, on-bead digestion, and unique labeling with isobaric peptide tags enabled 

multiplex RTS-SPS-MS3 analysis to identify targets that were both enriched relative to DMSO and 

competable by 20(S)-OHC. 

Our analysis revealed 12 proteins that were enriched by 1 by more than 7-fold at a p-value of 0.05 

(Fig. 4b).  Comparison of our enriched targets in the presence and absence of MβCD demonstrated that, 

while MβCD reduced the magnitude of fold changes versus DMSO, neither the identity nor the relative 

enrichment of probe targets were significantly altered (Fig. 4b and Fig. S3b,c).  We again observed the 

proteins Tmem97, Ephx1, Cav1, Vkorc1l1, Ldah, Vdac2, and Bsg in the top 5% of target enrichment, 

comprising ~60% of the most enriched proteins in our previous experiments (Fig. 3b).  Another 89 targets 

were enriched at between 2.75 and 7-fold at a p-value of 0.05, representing a selection of transmembrane 

proteins, signal transduction proteins, lipid biosynthetic enzymes, and membrane trafficking/adaptor 

proteins identified in our previous GO analysis.  Enriched proteins in these experiments also involved in 

Golgi membrane homeostasis (Tmem19963,64), transmembrane proteins of unannotated function 

(Tmem238, Smim4), and the caveolin isoform Cav2. 

As anticipated, only a subset of 1 interactions were competable by 20(S)-OHC (Fig. 4d,e).  In this 

dataset, a sharp divide separated the top 0.3% of proteins from less competable interactors.  The most 

competable proteins encompassed the highly enriched targets Tmem97, Ephx1, and Cav1.  In addition, the 

list included Abcb1 (P-glycoprotein 1), an ATP-dependent multidrug transporter that can translocate sterol 

metabolites across the membrane,65,66 and Arxes1/2, a retrotransposed protease gene on the X-chromosome 

that plays a role in adipogenesis.67  Both Abcb1b and Arxes1/2 also appear with in the top 2% of proteins 

enriched by 1. 

The full fingerprint of direct OHC binding proteins provided us with an opportunity to probe the 

engagement of OHCs and proteins with relevant biological functions.  We selected a collection of targets 

with a range of competabilities to query the correlation between our MS results and immunodetected 

endogenous protein, and to highlight potential roles for direct OHC targets in cellular signaling networks 

(Fig. 4f).  Briefly, live cell crosslinking of 1 in the presence or absence of 20(S)-OHC, biotinylation of 

crosslinked proteins, streptavidin enrichment, and Western blot detection with specific antibodies provided 
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an orthogonal measure of target engagement in cells.  A highly competable protein identified in our data 

was Gas1, an upstream Smo regulator that coordinates the Hedgehog signaling pathway in embryonic 

development.68,69  Competable binding of Gas1 by 20(S)-OHC complements recent findings that Gas1 

localizes to cholesterol microdomains as an obligate part of its activity in Hh signaling,70 and suggests that 

endogenous OHCs may directly or indirectly contribute to this mechanism of regulation.  Moderately 

competable proteins that consistently appeared in our enrichment data were the Vdac isoforms 1 and 2.  

Vdac isoforms are known to play a direct role in steroidogenesis by regulating the transport of cholesterol 

from the outer mitochondrial membrane to the inner mitochondrial membrane for conversion to 

pregnenolone by Cyp11a1.71,72  The direct binding to 1 to Vdac provides a mechanism by which OHCs 

might act as a biochemical rheostat for steroidogenesis.  To query less competable targets, we likewise 

verified engagement of the scaffolding protein Reep5, which plays a structural role in the architecture of 

sarcolemmal membranes in muscle cells,73 the protein Gpr107, which chaperones receptors to organelle 

membranes,74 and the adaptor protein Tmem199, an assembly factor in vacuolar ATPase complexes that 

control energy-dependent acidification of cellular organelles.63,64  In each of these cases, 1 pulled down 

endogenous protein to an extent that correlated with proteomic abundance, verifying that our proteome-

wide profiling can provide a quantitative catalogue of 1-interacting proteins in living cells (Fig. S4a,b). 

 

Discovery of Tmem97 as a selective OHC target 

The most enriched and competable protein identified in our studies was Tmem97, a transmembrane 

protein with a molecular weight of 21 kDa– approximately the same molecular weight as the competable 

band identified in our in gel fluorescence analysis (Fig. 2e).  Tmem97, also known as the σ2 receptor, is a 

protein biomarker that is overexpressed in proliferative tumors, and is a target for PET imaging in the 

clinic.75  Originally characterized by its pharmacological profile, Tmem97 has also been investigated as a 

non-opioid target for psychiatric conditions and neuropathic pain.44  Identification of the Tmem97 gene in 

201776 and genetic perturbation studies subsequently established an integral role for Tmem97 in cholesterol 

homeostasis, where it regulates trafficking of the cholesterol transporter NPC1 from the ER to the 

lysosome.77,78  For its utility as a cancer radioimaging agent and potential relevance to lysosomal cholesterol 

storage diseases, Tmem97 is a valuable therapeutic target.79  However, no endogenous ligand for Tmem97 

has been established, and no structural data is available to guide pharmacological design. 

To determine whether Tmem97 represented the 21 kDa band identified in our gel-based assays, we 

took advantage of ligands selective for Tmem97 or the structurally unrelated σ1 receptor.  Using the σ1 

ligand PRE-08480 or the Tmem97 ligand BIMU-881 as competitors, live-cell crosslinking to 1, TAMRA 

labeling, and SDS-PAGE analysis revealed that the Tmem97 ligand, but not the σ1 receptor ligand, 

effectively out-competed labeling by 1 (Fig. 5a).  Biotin labeling and streptavidin pulldown confirmed that 
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the 21 kDa band labeled was isolated only in the presence of the σ1 receptor ligand, whereas competition 

by the Tmem97 ligand prevented crosslinking, subsequent tagging, and isolation.  Both Western blot 

imaging of biotin-tagged protein and immunodetection supported the identity of the 21 kDa band as 

Tmem97.  In addition, competition of 1 crosslinking by 20(S)-OHC, biotin/streptavidin enrichment, and 

immunodetection of isolated protein with a Tmem97 antibody showed that inhibition of Tmem97 signal 

was commensurate with competition of the 21 kDa band in TAMRA fluorescence analysis (Fig. 5b). 

Finally, to verify that the 21 kDa band labeled by 1 was indeed Tmem97, we used CRISPR/Cas9 

to ablate expression of Tmem97 in a population of NIH-3T3 cells (Fig. 5c).  Photoaffinity crosslinking of 

1 in wild-type and Tmem97-knockout cells demonstrated that loss of Tmem97 eliminated the prominent 

band at 21 kDa, as determined by SDS-PAGE analysis of the TAMRA-labeled membrane proteome and 

isolation of crosslinked protein from each cell population. 

Because lipid-based ligands interact with receptors on layers of competability, we sought to 

determine ability of structurally diverse molecule to out-compete labeling by 1.  Neither the long-chain 

lipid palmitoylethanolamide  (PEA) nor the polyhydroxylated carbocycle inositol could effectively reduce 

labeling by 1, indicating that neither bound to Tmem97 at the same site as 1 and 20(S)-OHC (Fig. 5d).  To 

determine whether Tmem97:1 binding could distinguish hydroxylation patterns within the sterol structure, 

we evaluated competition by unmodified cholesterol or the regioisomeric oxysterol 25-OHC.  While 

cholesterol itself was a poor competitor of 1, 25-OHC could partially outcompete labeling by 1, indicating 

that Tmem97 is sensitive to the extent and pattern of sterol hydroxylation.  Finally, we tested whether the 

configuration of the C20 alcohol could differentiate competition by 20(S)- and 20(R)-OHC.  Notably, the 

20(S) stereochemistry is produced endogenously by Cyp11a1 oxidation of cholesterol en route to 

pregnenolone.82  Competition with either the C20(S) or the C20(R) epimer revealed that 20(R)-OHC 

competed only 75% of probe labeling at a concentration of 50 µM, whereas competition by 50 µM 20(S)-

OHC completely abolished labeling, indicating a stereochemical preference for a C20(S)-OH interaction. 

Tmem97 is phylogenetically related to the enzyme 3-β-hydroxysteroid-Δ8,Δ7-isomerase 

(Emopamil-binding protein, Ebp), which catalyzes migration of the C8-C9 double bond in 

zymosterol/zymostenol to its C7-C8 position in lathosterol/dehydrolathosterol.83,84  Despite their 

evolutionary relationship, Tmem97 lacks an acidic residue homologous to E122 in Ebp (human numbering), 

which is required for enzyme catalysis.85  To determine a binding site for 20(S)-OHC within Tmem97, we 

used the recently solved cryo-EM structure of human Ebp (hEbp, PDB 6OHT)86 as a template to predict 

the structure of mouse Tmem97 (82% pairwise identity with human Tmem97) using the Robetta server.87  

We embedded the resulting model within a POPC membrane and performed all-atom molecular dynamics 

simulations to equilibrate the membrane-bound Tmem97 structure.  Docking of 20(S)-OHC into this model 

produced a stable pose in which the 20(S)-OHC binding site shares several homologous residues with the 
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active site in hEpb (Fig. 5e).  As in Ebp and other sterol-binding proteins, an array of hydrophobic and 

aromatic residues line a central binding cavity with a helical “cap” at the top.  The C3 hydroxyl group of 

20(S)-OHC forms a hydrogen bond to the imidazole side chain of H106, while the isooctyl tail is 

accommodated by a hydrophobic pocket composed of W12, L16, F88, V146, and Y150.  Hydrophobic 

interactions between the isooctyl side chain and these residues would disfavor introduction of a polar group 

at C25, providing a rationale for reduced competition of 1 by 25-OHC vs 20(S)-OHC.  Interestingly, the 

Y150 phenolic oxygen is located within 6.7 Å of the C20 alcohol, but no hydrogen bond is apparent in this 

structure.  

To ascertain whether residues in the proposed binding pocket influenced the extent of Tmem97 

labeling by 1 or degree of competition with 20(S)-OHC, we transiently overexpressed FLAG-tagged 

Tmem97 and constructs containing mutations at residues that interact with 20(S)-OHC in our model (Fig. 

5f).  While the F88A mutant protein was not expressed, the Y150A, E61A, and W95A mutants were 

robustly produced, appearing ~3 kDa higher in apparent MW than endogenous Tmem97 due to the presence 

of the FLAG epitope.  Strikingly, while the E61A and W95A mutants were labeled by 1 and competable 

with 20(S)-OHC to the same extent as the wild-type protein, the Y150A mutant was not labeled.  As no 

distinct interactions favor binding to the (S) over the (R) 20-OHC epimer, we hypothesize that selective 

competition by the 20(S) epimer of 20-OHC may be a result of conformational and/or dynamic factors that 

govern Tmem97–20(S)-OHC binding in the cell membrane.  Our identification of Tmem97 as a highly 

enriched, stereoseletively competable target of 20(S)-OHC raises an intriguing possibility for an 

endogenous role of OHC metabolites in Tmem97-regulated cholesterol homeostasis.   Our model offers a 

structural template for the rational design of Tmem97 inhibitors as therapeutics of lysosomal cholesterol 

storage diseases and as radioligands for cancer diagnosis. 

 

Discussion 

While cholesterol is the most abundant lipid present in mammalian cell membranes, OHCs are 

transient species that exist at low concentrations in cells.9  Additional hydroxylation of OHCs relative to 

cholesterol confers these molecules with privileged access to cholesterol binding sites and membrane 

environments, where their presence can profoundly disrupt locales and resident proteins.  The activity of 

OHCs in cells is a function of their affinity for specific receptors and their constellation of cellular targets.  

Well-known for their signaling roles, the complete set of OHC binding remain virtually unknown, and 

therapeutic opportunities associated with their direct targets and functions are largely untapped. 

In this work, we describe our design, synthesis, and application of a chemoproteomics OHC probe 

to fingerprint OHC interactions in live mammalian cells.  By incorporating structurally benign functional 

groups within the signaling molecule 20(S)-OHC, we establish a probe that precisely mimics the natural 
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molecule and preserves its signaling activity in cells.  We create a reproducible, quantitative protocol for 

competing targets of 1 in the native environments and perform multiplexed, proteome-wide analysis.  We 

reveal OHC targets on a spectrum of competability that have functional roles in signal transduction, protein 

trafficking, and membrane lipid metabolism, and we identify specific processes in immune response and 

cancer that are functionally integrated with OHC target proteins.  We demonstrate that the metabolic 

regulator protein Tmem97 is a stereo- and regioselective target of OHCs in live cells, illuminating its 

potential roles in metabolism and cancer, and providing a template to design molecules that intervene in its 

functions. 

 We note that the membrane proteome examined in this study excludes nuclear hormone receptors 

that bind OHCs; we are currently profiling the nuclear fraction to quantify OHC engagement with known 

targets and yet-unidentified OHC receptors.  In the future, chemoproteomics analysis of sterol and other 

lipid and hydrophobic metabolites will benefit from new reagents for small molecule delivery to cells, such 

as synthetic LDL particles88 and next-generation cavitands.89  Improved methods for membrane protein 

solubilization, combined with powerful advances in liquid chromatography/mass spectrometry of 

hydrophobic peptides, can likewise enhance the resolution and detection of target proteins.90  Critically, 

enhanced coverage hinges on fundamental improvements in diazirine photocrosslinking chemistry91 and 

continued optimization of click labeling protocols.23  Moving forward, the multiplexing capability of this 

method can be readily extended to an array of probe and competitor structures, providing a platform to 

distinguish targets of metabolite families.  In synergy with appropriate data analysis, chemoproteomic 

profiling can inform target prediction and aid the design of metabolite-inspired drugs.  More broadly, the 

identification of metabolite targets in cells can integrate chemical structure and biological activity, 

providing new dimensions to our understanding of human health. 
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Experimental Procedures 

 

Chemical synthesis 

Synthetic procedures and spectral data for probe 1 and 20(R)-OHC are provided in the Supplemental 

Experimental Procedures. 

 

In vitro photoactivation 

A solution of 10 mM probe 1 in DMF in a 0.2 mL PCR tube was irradiated using a UV crosslinker (Thermo 

Fisher, 13-245-221) equipped with a bank of five light tubes (F8T5/BLB, wavelength range 330–410 nm, 

peak wavelength 368 nm).  At each time point, a 1 µL aliquot of the irradiated probe solution was transferred 

to a NanoQuant plate (Tecan). Absorbance was measured using a Spark M10 multimode plate reader 

(Tecan) with scanning from 280 nm to 550 nm.  

 

Cell culture 

NIH-3T3 cells (ATCC, CRL-1658) and Shh-LIGHT2 cells were cultured in high-glucose DMEM (Gibco, 

11965118) containing 10% bovine calf serum (CS, ATCC, CRL-1658), 100 U/mL of penicillin-

streptomycin (Gibco, 15140163), and 1 mM sodium pyruvate (Thermo Fisher, 11360070).  HEK-293T 

cells (ATCC, CRL-3216) were cultured in high-glucose DMEM (Gibco, 11965118) containing 10% fetal 

bovine serum (FBS, Gibco, 26140079), 100 U/mL of penicillin-streptomycin (Gibco, 15140163), 1 mM 

sodium pyruvate, and 2 mM L-glutamine (Oakwood, M02960). Cells were seeded at an initial confluence 

of ~20%, passaged every 3-4 days upon reaching 75-85% confluence, and maintained in an atmosphere of 

5% CO2 and 95% humidity at 37 °C. 

 

Gel electrophoresis 

Samples were loaded on a 4–15% PROTEAN TGX Stain-Free Protein Gel (Bio-Rad, 4568083 (Mini) or 

5678084 (Midi)) with Tris/Glycine/SDS running buffer (Bio-Rad, 1610772), and proteins were resolved at 

a current of 125 V (Mini) or 150 V (Midi) for 1 h at room temperature. In-gel fluorescence and stain-free 

total protein signal were detected using a Bio-Rad Chemidoc MP Imaging System. Band intensities were 

quantified using Bio-Rad Image Lab Software v6.0. 

 

Western blot analysis 

Proteins resolved by SDS-PAGE were transferred to a PVDF membrane (0.22 µm, Bio-Rad, 1620177) 

using a Bio-Rad Trans-Blot Turbo Transfer System (Bio-Rad, 1704273). For detecting biotinylated 

proteins, membranes were blocked in 0.2 % I-Block (Thermo Fisher, T2015) in PBST overnight at 4 °C 
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before incubating with IRDye 800CW Streptavidin (Licor, cat # 926-32230, 1:10,000) in 0.2% I-Block in 

PBST at room temperature for 1 h or at 4 °C overnight. For detection using primary antibodies, membranes 

were blocked in 2% non-fat milk (Nestle, Carnation Instant Nonfat Dry Milk) in PBST for 1 h at room 

temperature, incubated with primary antibody in 2% non-fat milk in PBST at 4 °C overnight, rinsed 3× 

with PBST, incubated with secondary antibody (1:10,000 in 2% non-fat milk in PBST) for 1 h at room 

temperature, and rinsed 3× with PBST.  HRP-conjugated secondary antibodies were developed using 

Clarity Western ECL Substrate (Bio-Rad, 170506) or SuperSignal West Femto Maximum Sensitivity 

Substrate (Thermo Fisher, 34096). Fluorescence and chemiluminescence signals were collected using a 

Bio-Rad Chemidoc MP Imaging System. Band intensities were quantified using Bio-Rad Image Lab 

Software v6.0. 

 

Shh-LIGHT2 assays 

Shh-LIGHT2 cells were seeded in 96-well plates at a density of 3.5 × 104 cells/well.  After 24 h, growth 

media was replaced with serial dilutions of 1, 20(S)-OHC, 20(R)-OHC, or SAG (CAS no. 912545-86-9, 

Carbosynth, FS76762) in low-serum media (phenol red-free high-glucose DMEM (Gibco, 21063045) 

containing 0.5% bovine calf serum (CS, ATCC, CRL-1658), 100 U/mL of penicillin-streptomycin (Gibco, 

15140163), and 1 mM sodium pyruvate)  at a normalized DMSO concentration of 0.2%. After 30 h, cells 

were washed with PBS and treated with Passive Lysis Buffer (20 µL/well, Promega, E1941) at room 

temperature for 15 min with rocking.  10 µL lysate from each well was transferred to a white-bottomed 

assay plate (Corning, 3912) for Firefly and Renilla luciferase measurements using a Dual Luciferase 

Reporter kit (Promega, E1960) on a Tecan Spark M10 multimode plate reader.  Gli activity was calculated 

as the ratio of Firefly/Renilla luciferase signal and percent Gli activation was assessed relative to DMSO-

only control.  Dose-response curves were generated using GraphPad Prism software. 

 

Preparation of MβCD complexes 

20(S)-OHC, 20(R)-OHC, 25-OHC, cholesterol, and inositol were dissolved in MeOH-CHCl3 (2:1) to a 

concentration of 10 mM in a glass vial.  Solvent was removed under a stream of nitrogen to yield a thin 

film on the bottom of the vial.  A solution of 37.56 mM methyl-β-cyclodextrin (MβCD) in phenol red-free 

DMEM was added to a final concentration of 3.76 mM, and the mixture was bath sonicated to obtain a clear 

solution (30~60 min).  The solution was sterile-filtered through a 0.22 µm PES filter (CELLTREAT, 

229746), aliquoted into glass vials, and stored at –20 °C until use. 

 

Probe incubation and crosslinking 
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For in-gel fluorescence analysis, NIH-3T3 cells were seeded at a density of 3 × 105 cells/well in 6-well 

plates (Corning, 353046) and cultured until reaching 80–90% confluence (~24 h).  For Western Blot 

analysis, cells were seeded at a density of 3 × 105 cells/well in 10 cm dish (Corning, 353003) and cultured 

until reaching 80–90% confluence (~72 h).  For mass spectrometry analysis, NIH-3T3 cells were seeded at 

a density of 8 × 105 cells cells/well in 15 cm dish (Corning, 353025) and cultured until reaching 80–90% 

confluence (~72 h). 

For target profiling of 1 in the absence of MβCD, stock solutions of compounds in DMSO or DMSO alone 

were diluted in serum-free media to the concentrations indicated, with DMSO concentrations normalized 

to 0.01%. Cells were incubated with compound-containing media at 37 °C for 30 min, washed once with 

ice-cold PBS, and maintained in PBS on ice.  Lids were removed from plates and cells were irradiated for 

5 min on ice with 365 nm UV light using a UV-crosslinker (Thermo Fisher, 13-245-221).  For no-UV 

control experiments, probe-treated cells were incubated on ice for 5 min in ambient light. 

For target profiling of 1 in the presence of MβCD, stock solutions of competitor compounds in MβCD 

(prepared as above) or DMSO were diluted in serum-free media to the concentrations indicated and a 

normalized concentration of 0.5 mM MβCD in all samples.  Cells were incubated at 37 °C for 1 h before 

adding a 10× solution of probe 1 or DMSO to a normalized concentration of 0.01% DMSO in all samples.  

Cells were incubated at 37 °C for another 30 min, then rinsed and irradiated as above. 

 

Cell harvest and subcellular fractionation 

After crosslinking, cells were detached by scraping in cold PBS and collected by centrifugation at 4 ºC and 

750 × g for 5 min.  Cell pellets were washed 2× by resuspension in ice-cold PBS and centrifugation, then 

snap-frozen in liquid N2 and stored at –80 °C before further processing.  Subcellular fractionation was 

conducted according to Baghirova et al.1  Namely, cell pellets were resuspended in ice cold lysis buffer A 

(50 mM HEPES, pH 7.4; 150 mM NaCl; 1 M hexylene glycol; 25 µg/ml digitonin; and 1× cOmplete EDTA-

free Protease Inhibitor Cocktail (Roche, 11836170001)) and incubated using an end-over-end rotator for 

10 min at 4 °C.  Lysate was centrifuged at 2000 × g for 10 min at 4 °C and the supernatant was collected 

as the cytosolic fraction. Pellets were suspended in ice cold lysis buffer B (50 mM HEPES, pH 7.4; 150 

mM NaCl; 1 M hexylene glycol; 1% IGEPAL-CA630; and 1× cOmplete EDTA-free Protease Inhibitor 

Cocktail) and resuspended by vortexing. The suspension was incubated on an end-over-end rotator for 30 

min at 4 °C and centrifuged at 7000 × g for 10 min at 4 °C. The supernatant was collected as the membrane 

fraction. The remaining pellet was suspended in ice cold lysis buffer C (50 mM HEPES, pH 7.4; 150 mM 

NaCl; 1 M hexylene glycol; 0.5% sodium deoxycholate; 0.1% SDS; 25U/mL benzonase; and 1× cOmplete 

EDTA-free Protease Inhibitor Cocktail), resuspended by vortexing, and incubated for 20 min on an end-

over-end rotator at 4 °C. The suspension was pelleted at 7800 × g for 10 min at 4 °C, and the resulting 
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supernatant was collected as the nuclear fraction. Protein concentrations of each fraction were determined 

using the BCA protein assay (Thermo Fisher, 23227). 

 

Click reaction 

Membrane fractions from all samples in each experiment were normalized to the same protein concentration 

(~40-60 µg for gel-based analysis, ~600-900 µg for mass spectrometry analysis) by diluted in fractionation 

lysis buffer.  A solution of azide in DMSO was added to a concentration of 25 µM TAMRA azide (Click 

Chemistry Tools, AZ109) or 100 µM picolyl biotin azide (Click Chemistry Tools, 1167), followed by a 

freshly prepared catalyst mixture containing TBTA (102 µM, from a 1.7 mM stock in 4:1 DMSO:t-BuOH), 

CuSO4 (1 mM, from a 50 mM stock in H2O), and TCEP (1 mM, from a 50 mM stock in PBS, adjusted to 

pH 7~8 immediately before use). After incubating on an end-over-end rotator for 1 h at room temperature, 

each reaction was diluted with 4 volumes of cold acetone (–20 °C), vortexed briefly, and maintained at –

20 °C for 30~60 min. Precipitate was pelleted at 20,000 × g for 10 min at 4 °C, resuspended in acetone by 

brief bath-sonication, and maintained at –20 °C for 10~30 min two times. After removing the supernatant, 

the pellet was air dried at RT for 5~10 min. 

 

In-gel fluorescence analysis 

For fluorophore-conjugated samples, dried pellets from acetone precipitation were resuspended in equal 

volumes of 1% SDS in PBS and 1% IGEPEL CA-630 in PBS containing 1× cOmplete EDTA-free Protease 

Inhibitor Cocktail, and 1 × SDS sample buffer (from 6 × SDS sample buffer, which contains 300 mM Tris-

HCl, pH6.8, 50% (v/v) glycerol, 12% (w/v) SDS, 600 mM DTT and 0.6 g/L bromophenol blue).  Samples 

were bath sonicated for 3~5 min, incubated on a Thermomixer (Eppendorf, 5350) for 30 min (50 °C, 950 

rpm) and subjected to SDS-PAGE.  

 

Streptavidin enrichment 

For biotin-conjugated samples, dried pellets from acetone precipitation were resuspended in equal volumes 

of 1% SDS in PBS and 1% IGEPEL CA-630 in PBS (containing 1× cOmplete EDTA-free Protease Inhibitor 

Cocktail) by bath sonication (3~5 min) before diluting to a final concentration of 0.1 % SDS and 1% 

IGEPEL CA-630 in PBS (containing 1× cOmplete EDTA-free Protease Inhibitor Cocktail).  The diluted 

solution was bath-sonicated for 3~5 min and centrifuged at 7,000 × g at RT for 3 min to pellet any insoluble 

proteins.  The supernatant was transferred to a 1.7 mL tube containing streptavidin agarose (Thermo Fisher, 

20349, 50% slurry, pre-washed twice with PBS).  The mixture was incubated on an end-over-end rotator 

overnight (12~16 h) at room temperature.  The suspension was transferred to a Pierce centrifuge column 

(Thermo Fisher, 0.8 mL) and centrifuged at 1,000 × g at RT for 1 min.  The flow-through was discarded, 
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and the resin was washed 3× with Wash Buffer containing 1% IGEPEL CA630, 0.1% SDS in PBS and 

transferred to a new 1.7 mL tube in Wash Buffer. The suspension was centrifuged at 2,500 × g at RT for 1 

min and the supernatant was discarded.    

For SDS-PAGE/Western blot analysis, proteins were eluted by incubating the resin in 1× SDS sample 

buffer containing 2 mM biotin for 30 min at 50 °C.  For mass spectrometry analysis, proteins bound to the 

resin were directly subjected to on-bead digestion. 

 

Mass spectrometry sample preparation 

On-bead digestion. After enrichment, streptavidin agarose was resuspended in 6 M urea in PBS, reduced 

with 10 mM DTT for 1 h at room temperature, and alkylated with 25 mM iodoacetamide on an end-over-

end rotator in the dark for 30 min at room temperature. Beads were pelleted at 2,500 × g for 1 min, the 

supernatant was removed, and the beads were washed 2× with PBS and resuspended in 2 M urea in PBS. 

Trypsin (1.5 µg) (Promega, V5111) and 1 mM CaCl2 were added to the samples and digestion was 

performed for 12-16 h at 37 °C on a Thermomixer.  Supernatant was collected and the beads were washed 

with water and 50% acetonitrile. The washes were combined and concentrated to dryness using a CentriVac 

concentrator (Labconco, 7310022).  

 

Sample desalting. Dried peptides from the trypsin digest were resuspended in buffer A (98% H2O, 2% 

acetonitrile, 0.2% formic acid) and desalted using a StageTip (homemade from Empore C18 Extraction 

disks, 3M, 2215, 200 µL Pipette tip, ~20 µg capacity) pre-equilibrated first with acetonitrile and then with 

buffer A.  The sample-loaded StageTip was washed with buffer A and subsequently eluted with elution 

buffer 1 (50% acetonitrile, 50% H2O, 0.2% formic acid).  For TMT labeling, peptides were further eluted 

with elution buffer 2A (80% acetonitrile, 20% H2O, 0.2% formic acid). For label-free quantification, 

peptides were further eluted with elution buffer 2B (75% acetonitrile, 25% H2O, 0.2% formic acid).  

Desalted samples were concentrated to dryness using a CentriVac concentrator and stored at –80 °C. 

 

TMT labeling. Dried, desalted peptides from the trypsin digest were resuspended in 50 µL of 100 mM 

triethylammonium bicarbonate (TEAB, pH 8.5) and 20 µL of a 20 µg/µL solution of TMT 6-plex (Thermo 

Fisher, 90061) or 10-plex isobaric label reagent (Thermo Fisher, 90110) in anhydrous acetonitrile.  Labeling 

reactions were incubated at room temperature for 2 hour on a Thermomixer (650 rpm). A label efficiency 

check was performed by withdrawing 0.4 µL from each sample within a single plex to ensure at least 98% 

labeling of all N-termini and lysine residues.  Reactions were quenched with 4 µL of 5% hydroxylamine at 

room temperature for 15 min. TMT-labeled peptides from all samples were combined and concentrated to 

dryness using a CentriVac concentrator. 
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Sample desalting and TMT reagent removal. The dried, combined, TMT-labeled peptides were 

resuspended in 200 µL buffer A (98% H2O, 2% acetonitrile, 0.2% formic acid) and desalted using an 

Agilent 1100 HPLC with an Optimized Technologies C4 peptide Macrotrap (3 x 8 mm; 200 µg maximum 

capacity). The mobile phase consisted of 98% H2O, 2% acetonitrile, 0.2% formic acid (solvent A) and 95% 

ACN/0.1% FA (solvent B) delivered at a flow rate of 250 µL/min with the following gradient: 0-10 min, 

0% B; 10-12 min, 0-85% B; 12-17 min, 85% B; 17-18 min, 85-90% B; 18-23 min 90% B; 23-24 min, 90-

100% B; 24-30 min, 100% B. (Post time: 5 min, 0% B and 200 µL/min). The fraction between 12-15 min 

was collected and concentrated to dryness using a CentriVac concentrator and stored at –80 °C before LC-

MS/MS analysis at the Beckmann Institute Proteome Exploration Laboratory at Caltech.  Full details of 

LC-MS/MS and LC-MS/MS/MS are provided in the Supplementary Information. 

 

TMT labeling quantification. Proteomics data analysis was performed in Proteome Discoverer 2.4 

(Thermo Scientific). Spectra were filtered for HCD spectra with signal-to-noise > 1.5. Spectra were 

searched against Reviewed proteins in the Uniprot mouse proteome (UP000000589, downloaded July 2020) 

and common contaminant proteins (Maxquant contaminants database, downloaded July 2020) using 

SEQUEST HT search algorithm. SEQUEST HT search parameters were as follows: fully Tryptic peptides 

with no more than 2 missed cleavages, precursor mass tolerance of 10 ppm and fragment mass tolerance of 

0.6 Da, and a maximum of 3 equal modifications and 4 dynamic modifications per peptide. Static 

modifications were carbamidomethylation of cysteine (+57.021464 Da) and TMT6plex addition to lysines 

and peptide N-termini (+229.162932 Da). Oxidation on methionine residues (+15.994915 Da), methionine 

loss on protein N-termini (−131.040485 Da), methionine loss + acetylation on protein N-termini 

(−89.02992 Da), acetylation on protein N-termini (+42.010565 Da), and phosphorylation of serine, 

threonine, and tyrosine (+79.966331 Da) were dynamic modifications. Percolator FDRs were set at 0.01 

(strict) and 0.05 (relaxed). Spectrum file retention time calibration was used with TMT6plex addition to 

peptide N-termini and lysines and carbamidomethylation of cysteine as static modifications. Reporter ion 

quantification used a co-isolation threshold of 100, average reporter S/N threshold of 5, and SPS mass 

match threshold of 70%. Peptide FDRs were set at 0.001 (strict) and 0.01 (relaxed), with peptide confidence 

at least medium, lower confidence peptides excluded, and minimum peptide length set at 6. 

 

Data analysis. Non-normalized abundance values of proteins from Proteome Discoverer were log2-

transformed before further analysis.  Missing values were imputed within treatment groups using the 

MinProb (Probabilistic Minimum Imputation) method embedded in the imputeLCMD R package. Log2 fold 
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changes were calculated from the differences in the means of replicates between groups. The statistical 

significance of differences between groups was assessed using a two-tailed unpaired t-test.  

 

Analysis of probe-labeled YFP-mSmo in HEK-293T cells 

Protein in the membrane fraction of each sample was normalized to ~60 µg and transferred to a 1.7 mL 

tube containing pre-washed GFP-Trap® magnetic agarose beads (Chromotek, gtma, washed twice in PBS).  

The suspension was incubated on an end-over-end rotator for 3 h at 4 °C. The beads were separated with a 

magnetic rack (Thermo Fisher, DynaMag-2 Magnet, 12321D) and washed three times with cold 0.1% 

IGEPAL CA-630 in PBS.  The beads were resuspended in 1% SDS in PBS and subjected click reaction 

using the conditions described above. After the reaction, beads were separated with a magnet and washed 

three times with PBS.  Proteins were eluted by resuspending the beads in 1% SDS in PBS and 2× SDS 

sample buffer, bath-sonication (3~5 min), and incubation on a Thermomixer for 20 min (50 °C, 450 rpm).   

The eluate was was transferred to a new tube and the elution was repeated once. The eluate fractions were 

combined, YFP-Smo and GFP expression was assessed by SDS-PAGE and in-gel fluorescence, and 

proteins were transferred to a PVDF membrane for detection of biotinylated proteins. 

 

Gene Set Enrichment Analysis (GSEA) 

GSEA was performed using GSEA desktop version 4.1.0.2  Datasets with log2-transformed fold changes 

were analyzed using the C5 (Gene ontology), C6 (Oncogenic signatures) or C7 (Immunologic signatures) 

gene set collections in the Molecular Signatures Database (MSigDB v. 7.2). The number of permutations 

was set to 1000 for p-value calculation and permutation type was set to gene_set.  All basic and advanced 

fields were set to default. 

 

Generation of Tmem97 knockout cell lines 

Guide plasmid cloning. A guide RNA target sequence in exon 1 of mouse Tmem97 was identified using 

Benchling tools.3,4,5  Oligonucleotides  with the  sgRNA  sequence  and  adaptor  overhangs  were ordered 

from IDT and annealed in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH pH 7.4, 2 

mM magnesium acetate) for 5 min at 95 ºC with cooling to RT over 45 min.  Annealed oligos were 

phosphorylated using T4 polynucleotide kinase (New England Biolabs, M0201) and ligated into the BbsI 

restriction site of the linearized pU6-(BbsI)_CBh-Cas9-T2A-mCherry plasmid (Addgene, 64324) using T4 

DNA ligase (New England Biolabs, M0202). Oligonucleotide sequences are provided in Table S1. 

 

NIH-3T3 cell guide transfection and FACS. NIH-3T3 Cells were seeded at a density of 1.5 × 106 cells/10 

cm plate 24 h before transfection. After reaching approximately 80~85% confluence, cells were transfected 
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with 14 µg plasmid DNA, which was precomplexed with Lipofectamine 2000 (Thermo Fisher, 11668019) 

at a ratio of 1:2.5 DNA:Lipo2000 (w/w) in Opti-MEM reduced serum media (Thermo Fisher, 51985034) 

for 10 min before adding dropwise to the cells.  Cells were cultured for an additional 42–48 h, trypsinized, 

and sorted by mCherry fluorescence on a Sony SY3200 Cell Sorter at the Caltech Flow Cytometry Core.  

Cells in the top 1% mCherry fluorescence were re-seeded into 96-well plates to achieve ~1 cell/well and 

expanded. 

 

TIDE analysis of knockout efficiency. Genomic DNA was extracted from cells using the DNeasy blood 

and tissue kit (QIAGEN, 69504) according to manufacturer's instructions. The primers for TIDE analysis 

were designed according to protocol recommendations 6(see Table S1 for primer sequences). PCR reactions 

were performed on 50 ng isolated genomic DNA extract using Phusion High-Fidelity DNA Polymerase in 

Phusion HF buffer (New England Biolabs, M0531) in a final volume of 25 µL. PCR products were purified 

using QIAquick PCR Purification Kit (QIAGEN, 28104) according to manufacturer's instructions and 

analyzed by Sanger sequencing. The publicly available TIDE program was used to determine knockout 

efficiency for each cell line (https://tide.nki.nl, accessed December 2020). 

 

Site-directed mutagenesis 

Myc-DDK-tagged mouse transmembrane protein 97 (Tmem97, NP_133706) in the pCMV6 vector was 

obtained from Origene (MR201535) and used for site-directed mutagenesis to create E61A, F88A, W95A, 

and Y150A mutants.  PCR reactions were performed using Phusion High-Fidelity 2X Master Mix (New 

England Biolabs, M0531) and parent constructs were digested with DpnI (New England Biolabs, R0176). 

All primer sequences are available in Table S1. 

 

Overexpression of Tmem97 and mutants HEK-293T cells 

HEK-293T cells were seeded at a density of 2.5 × 105 cells/well in a 6-well plate 24 h before transfection. 

After reaching approximately 60~70% confluence, cells were transfected with 2 µg DNA precomplexed 

with polyethylenimine (PEI) at a ratio of 1:3 DNA:PEI (w/w) in Opti-MEM reduced serum media for 30 

min.  Transfected cells were cultured for 42–48 h before compound treatment. 

 

Tmem97 homology modeling, 20(S)-OHC docking, and molecular dynamics analysis 

The Robetta prediction server was used to generate a homology model for TMEM97 based on the cryo-EM 

structure of human 3β-hydroxysteroid-∆(8),∆(7)-isomerase (NP_006570.1) complexed with the inhibitor 

U18666A (PDB 6OHT). Ligand-docking studies were performed using the Glide software in Maestro 

(Schrödinger, Version 12.5.139). Protein energy minimization and assignment of hydrogen bonds were 
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performed using the OPSL3e force field. The 20(S)-OHC binding site was refined using the Receptor Grid 

Generation script in Glide. 

Ten conformers of 20(S)-OHC were generated using the Python library ETKDG, 7  included in the 

cheminformatics Python library rdkit.8  Docking poses for 20(S)-OHC conformers in the Tmem97 model 

were predicted using Glide via the Ligand Docking script. Rigid ligand sampling was specified to retain 

the ligand conformations obtained from ETKDG and standard precision was used. The ligand conformers 

were permitted to dock anywhere within the cavity or on the exterior surface of the protein, and up to five 

docking poses per ligand were generated. The docking pose with the best Glide score, which docked the 

ligand in the internal cavity of the protein, was selected for molecular dynamics analysis.  

 

Molecular dynamics simulations 

The Tmem97 protein, POPC, and ions were parameterized using the CHARMM36m force field, with water 

as described in the TIP3P model.9,10  The temperature was maintained at 310 K using a Nosé-Hoover11,12 

thermostat with a damping constant of 1.0 ps for temperature coupling, and the pressure was controlled at 

1 bar using the Parrinello-Rahman barostat algorithm13 with a 5.0 ps damping constant for the pressure 

coupling.  Semi-isotropic pressure coupling was used throughout the calculations.   The Lennard-Jones 

cutoff radius was 12 Å, where the truncated non-bonded forces at the cutoff distance was smoothly shifted 

to 0 after 10 Å using a force-switch function.  Periodic boundary conditions were applied in all three 

directions.  The Particle Mesh Ewald algorithm14 with a real cutoff radius of 12 Å and a grid spacing of 1.2 

Å was used to calculate the long-range coulombic interactions.  A compressibility of 4.5 ×10-5 bar-1 was 

used along the xy-plane and the z axis to relax the box volume.  In all of the above simulations, water OH-

bonds were constrained by the SETTLE algorithm.15  The remaining H-bonds were constrained using the 

P-LINCS algorithm.16  A simulation time step of 2 fs was used for integrating the equation of motions.  All 

simulations were performed using GROMACS-2019.417,18 and the constrained dynamics simulations were 

done using PLUMED-2.5.19  The membrane-embedded Tmem97 protein was optimized using 1000 steps 

of energy minimization according to the GROMACS steepest descent algorithm17,30 followed by an MD 

simulation in a canonical ensemble, where the system was heated from 0 K to 310 K for 155 ps.  Next, an 

MD simulation in an isobaric-isothermal ensemble was performed with positional restraints on heavy atoms 

using a force constant of 9.6 kcal.mol-1 Å-2 for 2.25 ns.  The z-coordinates of the POPC headgroups were 

restrained inside the membrane with a force constant of ~2.4 kcal.mol-1Å-2, while the POPC molecules were 

allowed to move freely along the xy-plane.  Restraints on the protein and POPC molecules were 

progressively reduced to 0 kcal.mol-1Å-2.  The system was equilibrated by performing an MD simulation at 

a temperature of 310 K and pressure of 1 bar for 10 ns. 
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Main figure captions 

Fig. 1: Design, synthesis, and evaluation of 20(S)-OHC chemoproteomics probe 1. 

a. Structures of 20(S)-hydroxycholesterol (20(S)-OHC) and the photoactivable, clickable analogue 1,

which contains a diazirine at C25 for photocrosslinking and an alkyne at C19 for click chemistry.

b. Chemical synthesis of probe 1.  Conditions: a. NBA, aq. HClO4, 1,4-dioxane, 0 → 23 °C, 77%; b.

Pb(OAc)4, CaCO3, I2, hν, cyclohexane, 80 °C, > 99%; c. Zn, AcOH-H2O, 45 °C, 88%; d. PCC, Celite,

CH2Cl2, 23 °C, 87%; e. (i) Seyferth-Gilbert reagent, t-BuOK, THF, –78 °C, 80%; (ii) Cs2CO3, MeOH,

23 °C, >99%; f. 2-(3-bromopropyl)-2-methyl-1,3-dioxolane, Mg, THF, 0 → 23 °C, 66%; g. HCl, THF,

23 °C, 94%; h. (i) NH3, MeOH, 0 °C; (ii) NH2HSO3, 0 → 23 °C; (iii) I2, Et3N, THF, 23 °C, 46%.

c. Irradiation of probe 1 (10 mM, DMF) with 368 nm light results in loss of diazirine absorption at 353

nm with a half-life of 1.4 minutes.  Values are the average of triplicate measurements ± s.d.

d. Treatment of Shh-LIGHT2 cells with 20(S)-OHC, 20(R)-OHC, or probe 1 demonstrates that 20(S)-

OHC and 1, but not the inactive epimer 20(R)-OHC, activate the Smoothened-regulated Gli

transcription factors.  Values are the average of 3 biological replicates ± s.d.

e. Left: In-gel fluorescence analysis of membrane fractions from HEK293T cells overexpressing YFP-

Smo or GFP.  Live cells were treated with 1 or DMSO and irradiated, then YFP-Smo or GFP were

isolated from membrane fractions using a GFP nanobody that binds both fluorescent proteins.

Isolated proteins were subjected to a click reaction to biotinylate crosslinked proteins.  Right:

Detection of biotinylated proteins using Streptavidin IRDye 800CW (Strept-IR) demonstrates that 1-

treated YFP-Smo-expressing cells are labeled with biotin.  YFP-Smo-expressing cells treated with

DMSO and GFP-expressing cells treated with 1 show no biotin labeling.

Fig. 2: Probe 1 labels membrane proteins in live NIH-3T3 cells. 

a. Workflow for gel-based profiling of probe 1 target proteins.  Cells are incubated for 30 min with 1

µM 1, DMSO, or 1 µM 1 + 50 µM 20(S)-OHC and irradiated for 5 min with 368 nm light.  Isolated

membrane fractions are subjected to a click reaction with TAMRA azide, separated by SDS-PAGE,

and identified by in-gel fluorescence.

b. Control experiments demonstrate that fluorescent labeling requires treatment with 1, exposure to UV

light, and click ligation to TAMRA.  In “no 1”, cells were incubated with DMSO only; in “no UV”;

probe-treated cells were not exposed to 368 nm light; in “no Cu”, CuSO4 was omitted from the click

reaction; in “no N3”, TAMRA azide was omitted from the click reaction.
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c. Cell fractionation shows that TAMRA-labeled proteins appear primarily in the membrane fraction, as 

opposed to cytosolic or nuclear fractions.  The Sodium/potassium-transporting ATPase subunit alpha-

1 (Na/K ATPase) was used as a membrane marker. 

d. Proteins in the membrane fraction are labeled by 1 in a dose-dependent manner. 

e. Competition by 20(S)-OHC during incubation of cells with 1 reduces TAMRA labeling of a 21 kDa 

band in a dose-dependent manner. 

 

Fig. 3: Protein targets of probe 1 converge in distinct gene ontologies and disease signatures. 

a. Workflow for MS-based profiling of probe 1 target proteins.  Cells are incubated for 30 min with 1 

µM 1 or DMSO and irradiated for 5 min with 368 nm light.  Isolated membrane fractions are 

subjected to a click reaction with biotin picolyl azide, enriched with streptavidin agarose, and 

digested with trypsin.  Digested peptides from each sample are labeled with unique isobaric mass tags, 

then samples are pooled and analyzed by LC/RTS-SPS-MS3.  Data represent of 4 biological replicates 

of matched experiments with 1 and DMSO. 

b. Volcano plot showing statistical significance versus average log2(fold change) (“log2(enrichment)”) 

of peptides isolated from cells treated with 1 or DMSO alone.  Cutoffs discussed in the text at a p-

value of 0.002 and fold changes of 25 and 10 are indicated.  See also Fig S1, Fig S2A,B,C, and File 

S1. 

c. Gene Set Enrichment Analysis (GSEA) of 1-enriched proteins using Gene Ontology (GO) gene set. 

The top 16 GO pathways ranked by NES (Normalized Enriched Score) are listed.  Bubbles are 

colored according to GO term class; bubble size is proportional to the number of 1-enriched proteins 

found in each gene set. 

(d),(e) GSEA using the immunologic (D) and oncogenic (E) signature gene sets for 1-enriched proteins.  

Enriched proteins the leading edge of the gene set are listed below; color and size of the bubbles 

represent log2(enrichment) and –log(p-value), respectively. 

 

Fig. 4: 20(S)-OHC identifies enriched and competable probe 1 target proteins. 

a. Workflow for MS-based profiling of probe 1 target proteins.  Cells are preincubated with 50 µM 

20(S)-OHC complexed with MβCD or MβCD alone for 1h before addition of 1 µM probe 1 or DMSO 

and incubation for 30 min.  Cells are irradiated for 5 min with 368 nm light, then isolated membrane 

fractions are subjected to a click reaction with biotin picolyl azide, enriched with streptavidin agarose, 

and digested with trypsin.  Digested peptides from each sample are labeled with unique isobaric mass 

tags, then samples are pooled and analyzed by LC/RTS-SPS-MS3.  Data represent 3 biological 

replicates of matched experiments with 1, 1 + 20(S)-OHC, and DMSO. 
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b. Venn diagram of proteins enriched by probe 1 in the presence and absence of MβCD.  See also Fig. 

S3a,b,c. 

c. Volcano plot showing statistical significance versus average log2(fold change) (“log2(enrichment)”) 

of peptides isolated from cells treated with 1 µM 1 or DMSO alone.  Cutoffs discussed in the text at a 

p-value of 0.05 and fold changes of 7 and 2.5 are indicated.  See also File S1. 

d. Volcano plot showing statistical significance versus average log2(fold change) (“log2(competition)”) 

of peptides isolated from cells treated with 1 or 1 + 20(S)-OHC.  Cutoffs discussed in the text at a p-

value of 0.05 and a fold change of 2 are indicated. 

e. Scatter plot of enrichment versus competition for 1 target proteins.  Proteins selected for Western blot 

analysis are shown as bubbles, where size and color of represent p-values for competition and 

enrichment, respectively. 

f. Western blot analysis of proteins labeled by 1 in the presence or absence of 20(S)-OHC or DMSO 

alone, clicked to biotin, enriched on streptavidin, and resolved by SDS-PAGE. 

 

Fig. 5: Tmem97 is a selective protein target of probe 1. 

a. Left: A fluorescent band at 21 kDa in the membrane proteome of 1-labeled cells is eliminated by 

competition with BIMU-8, a Tmem97 (σ2 receptor) ligand, but not PRE-084, a σ1 receptor ligand.  

Middle: Competition with BIMU-8, but not PRE-084, reduces biotin labeling and Tmem97 antibody 

detection of the band at 21 kDa.  Right: structures of PRE-084 and BIMU-8. 

b. Biotin labeling and Western blot detection of Tmem97 show that the probe-labeled band at 21 kDa is 

reduced by 20(S)-OHC in a dose-dependent manner. 

c. The intensity of the probe-labeled 21 kDa band is dramatically reduced in Tmem97 knockout cells.  

TAMRA fuorescence (top) and Tmem97 antibody signal (bottom) from wild type and Tmem97-KO 

NIH-3T3 cells treated with 1 (duplicate samples) or DMSO. 

d. In-gel analysis of competition experiments with 20(S)-OHC, 25-OHC, inositol, 

palmitoylethanolamine (PEA), cholesterol, and 20(R)-OHC show reduction of the probe-labeled 21 

kDa band at various levels, suggesting structure-selective binding to Tmem97. 

e. Homology model of mouse Tmem97 based on the cryo-EM structure of human Ebp (PDB 6OHT).  

20(S)-OHC docks in a central binding pocket, indicated by a black circle. 

f. Alanine substitution of the Y150 residue in the predicted Tmem97:20(S)-OHC binding site eliminates 

labeling of overexpressed Tmem97 protein in HEK293T cells.  E61A and W95A mutants remain 

susceptible to labeling by 1, while an F88A mutant fails to express in cells. 
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Figures

Figure 1

Design, synthesis, and evaluation of 20(S)-OHC chemoproteomics probe 1. a. Structures of 20(S)-
hydroxycholesterol (20(S)-OHC) and the photoactivable, clickable analogue 1, which contains a diazirine
at C25 for photocrosslinking and an alkyne at C19 for click chemistry. b. Chemical synthesis of probe 1.
Conditions: a. NBA, aq. HClO4, 1,4-dioxane, 0 ฀ 23 °C, 77%; b. Pb(OAc)4, CaCO3, I2, hν, cyclohexane, 80 °C,
> 99%; c. Zn, AcOH-H2O, 45 °C, 88%; d. PCC, Celite, CH2Cl2, 23 °C, 87%; e. (i) Seyferth-Gilbert reagent, t-
BuOK, THF, –78 °C, 80%; (ii) Cs2CO3, MeOH, 23 °C, >99%; f. 2-(3-bromopropyl)-2-methyl-1,3-dioxolane, Mg,
THF, 0 ฀ 23 °C, 66%; g. HCl, THF, 23 °C, 94%; h. (i) NH3, MeOH, 0 °C; (ii) NH2HSO3, 0 ฀ 23 °C; (iii) I2, Et3N,
THF, 23 °C, 46%. c. Irradiation of probe 1 (10 mM, DMF) with 368 nm light results in loss of diazirine
absorption at 353 nm with a half-life of 1.4 minutes. Values are the average of triplicate measurements ±
s.d. d. Treatment of Shh-LIGHT2 cells with 20(S)-OHC, 20(R)-OHC, or probe 1 demonstrates that 20(S)-
OHC and 1, but not the inactive epimer 20(R)-OHC, activate the Smoothened-regulated Gli transcription
factors. Values are the average of 3 biological replicates ± s.d. e. Left: In-gel �uorescence analysis of
membrane fractions from HEK293T cells overexpressing YFP-Smo or GFP. Live cells were treated with 1
or DMSO and irradiated, then YFP-Smo or GFP were isolated from membrane fractions using a GFP
nanobody that binds both �uorescent proteins. Isolated proteins were subjected to a click reaction to



biotinylate crosslinked proteins. Right: Detection of biotinylated proteins using Streptavidin IRDye 800CW
(Strept-IR) demonstrates that 1-treated YFP-Smo-expressing cells are labeled with biotin. YFP-Smo-
expressing cells treated with DMSO and GFP-expressing cells treated with 1 show no biotin labeling.

Figure 2

Probe 1 labels membrane proteins in live NIH-3T3 cells. a. Work�ow for gel-based pro�ling of probe 1
target proteins. Cells are incubated for 30 min with 1 µM 1, DMSO, or 1 µM 1 + 50 µM 20(S)-OHC and
irradiated for 5 min with 368 nm light. Isolated membrane fractions are subjected to a click reaction with
TAMRA azide, separated by SDS-PAGE, and identi�ed by in-gel �uorescence. b. Control experiments
demonstrate that �uorescent labeling requires treatment with 1, exposure to UV light, and click ligation to
TAMRA. In “no 1”, cells were incubated with DMSO only; in “no UV”; probe-treated cells were not exposed
to 368 nm light; in “no Cu”, CuSO4 was omitted from the click reaction; in “no N3”, TAMRA azide was
omitted from the click reaction. c. Cell fractionation shows that TAMRA-labeled proteins appear primarily
in the membrane fraction, as opposed to cytosolic or nuclear fractions. The Sodium/potassium-
transporting ATPase subunit alpha-1 (Na/K ATPase) was used as a membrane marker. d. Proteins in the
membrane fraction are labeled by 1 in a dose-dependent manner. e. Competition by 20(S)-OHC during
incubation of cells with 1 reduces TAMRA labeling of a 21 kDa band in a dose-dependent manner.



Figure 3

Protein targets of probe 1 converge in distinct gene ontologies and disease signatures. a. Work�ow for
MS-based pro�ling of probe 1 target proteins. Cells are incubated for 30 min with 1 µM 1 or DMSO and
irradiated for 5 min with 368 nm light. Isolated membrane fractions are subjected to a click reaction with
biotin picolyl azide, enriched with streptavidin agarose, and digested with trypsin. Digested peptides from
each sample are labeled with unique isobaric mass tags, then samples are pooled and analyzed by
LC/RTS-SPS-MS3. Data represent of 4 biological replicates of matched experiments with 1 and DMSO. b.
Volcano plot showing statistical signi�cance versus average log2(fold change) (“log2(enrichment)”) of
peptides isolated from cells treated with 1 or DMSO alone. Cutoffs discussed in the text at a p-value of
0.002 and fold changes of 25 and 10 are indicated. See also Fig S1, Fig S2A,B,C, and File S1. c. Gene Set
Enrichment Analysis (GSEA) of 1-enriched proteins using Gene Ontology (GO) gene set. The top 16 GO
pathways ranked by NES (Normalized Enriched Score) are listed. Bubbles are colored according to GO
term class; bubble size is proportional to the number of 1-enriched proteins found in each gene set. (d),(e)
GSEA using the immunologic (D) and oncogenic (E) signature gene sets for 1-enriched proteins. Enriched
proteins the leading edge of the gene set are listed below; color and size of the bubbles represent
log2(enrichment) and –log(p-value), respectively.



Figure 4

20(S)-OHC identi�es enriched and competable probe 1 target proteins. a. Work�ow for MS-based pro�ling
of probe 1 target proteins. Cells are preincubated with 50 µM 20(S)-OHC complexed with MβCD or MβCD
alone for 1h before addition of 1 µM probe 1 or DMSO and incubation for 30 min. Cells are irradiated for
5 min with 368 nm light, then isolated membrane fractions are subjected to a click reaction with biotin
picolyl azide, enriched with streptavidin agarose, and digested with trypsin. Digested peptides from each
sample are labeled with unique isobaric mass tags, then samples are pooled and analyzed by LC/RTS-
SPS-MS3. Data represent 3 biological replicates of matched experiments with 1, 1 + 20(S)-OHC, and
DMSO. b. Venn diagram of proteins enriched by probe 1 in the presence and absence of MβCD. See also
Fig. S3a,b,c. c. Volcano plot showing statistical signi�cance versus average log2(fold change)
(“log2(enrichment)”) of peptides isolated from cells treated with 1 µM 1 or DMSO alone. Cutoffs
discussed in the text at a p- value of 0.05 and fold changes of 7 and 2.5 are indicated. See also File S1. d.
Volcano plot showing statistical signi�cance versus average log2(fold change) (“log2(competition)”) of
peptides isolated from cells treated with 1 or 1 + 20(S)-OHC. Cutoffs discussed in the text at a p-value of
0.05 and a fold change of 2 are indicated. e. Scatter plot of enrichment versus competition for 1 target
proteins. Proteins selected for Western blot analysis are shown as bubbles, where size and color of



represent p-values for competition and enrichment, respectively. f. Western blot analysis of proteins
labeled by 1 in the presence or absence of 20(S)-OHC or DMSO alone, clicked to biotin, enriched on
streptavidin, and resolved by SDS-PAGE.

Figure 5

Tmem97 is a selective protein target of probe 1. a. Left: A �uorescent band at 21 kDa in the membrane
proteome of 1-labeled cells is eliminated by competition with BIMU-8, a Tmem97 (σ2 receptor) ligand, but
not PRE-084, a σ1 receptor ligand. Middle: Competition with BIMU-8, but not PRE-084, reduces biotin
labeling and Tmem97 antibody detection of the band at 21 kDa. Right: structures of PRE-084 and BIMU-8.
b. Biotin labeling and Western blot detection of Tmem97 show that the probe-labeled band at 21 kDa is
reduced by 20(S)-OHC in a dose-dependent manner. c. The intensity of the probe-labeled 21 kDa band is
dramatically reduced in Tmem97 knockout cells. TAMRA fuorescence (top) and Tmem97 antibody signal
(bottom) from wild type and Tmem97-KO NIH-3T3 cells treated with 1 (duplicate samples) or DMSO. d. In-
gel analysis of competition experiments with 20(S)-OHC, 25-OHC, inositol, palmitoylethanolamine (PEA),
cholesterol, and 20(R)-OHC show reduction of the probe-labeled 21 kDa band at various levels,
suggesting structure-selective binding to Tmem97. e. Homology model of mouse Tmem97 based on the
cryo-EM structure of human Ebp (PDB 6OHT). 20(S)-OHC docks in a central binding pocket, indicated by
a black circle. f. Alanine substitution of the Y150 residue in the predicted Tmem97:20(S)-OHC binding site



eliminates labeling of overexpressed Tmem97 protein in HEK293T cells. E61A and W95A mutants remain
susceptible to labeling by 1, while an F88A mutant fails to express in cells.
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