Rationale for the selected antibiotics
The Gram-negative cell envelope presents both a major permeability barrier to antibiotics and a potential source of antibiotic targets. In particular, Bcc species are known for their impermeable cell envelope (~ 10 fold less permeable compared to E. coli 22,23), which contributes to extreme resistance to membrane-disrupting detergents and multiple classes of antibiotics 24,25. Our goal was to probe the mechanisms governing cell envelope-related resistance in B. cenocepacia K56-2. We therefore assembled a diverse panel of clinical and pre-clinical antibiotics targeting many aspects of cell envelope biogenesis (Fig. 1 and Supplementary Fig. 1A-C; all abbreviations listed in Table 1). We also included three hydrophobic large scaffold antibiotics in this panel that are generally excluded by the Gram-negative cell envelope (rifampicin [RIF], erythromycin [ERY], and novobiocin [NOV]; molecular weight > 600 Da) 5,8. We expected the large scaffold antibiotics to highlight chemical-genetic interactions in cell envelope permeability and disruptions in major cell envelope biogenesis mechanisms. In summary, we aimed to study cell envelope-associated chemical-genetic interactions and how they may be exploited to inform novel antibiotic combinations.
Constructing and validating a randomly-barcoded transposon mutant library
To profile genome-wide contributions to antibiotic susceptibility and resistance, we turned to transposon mutagenesis and Illumina sequencing to measure mutant abundance during antibiotic challenges. Previously, our lab has constructed transposon mutant libraries in K56-2, a multidrug-resistant ET12 epidemic lineage clinical isolate 26, to identify the essential genome 27 and characterise targets and mechanisms of action for antimicrobials 28–30. To leverage advances in sequencing and bioinformatic capabilities, we modified our Tn5 transposon to contain a random 20 bp barcode (Supplementary Fig. 1D), greatly facilitating the tracking of mutant abundance in many conditions by Illumina sequencing 21. After linking unique barcodes to genomic insertion site (RB-TnSeq), barcodes may be simply amplified by PCR and sequenced (BarSeq) (Supplementary Fig. 1D).
We generated a library of ~ 340,000 uniquely barcoded transposon mutants in K56-2 (approximately equally divided into 10 subpools). Library statistics can be found in Supplementary Table 1. The library had a median of 12 insertions per protein-coding gene and an average spacing between insertions of 18.7 bp. We found that insertion sites were more likely in low GC-content regions and genes (Supplementary Fig. 2), as we observed previously 27, which may be due to Tn5 transposon insertion and DNA sequencing biases.
To ensure we could use BarSeq to accurately quantify mutant abundance, we performed a pilot experiment with known levels of mutant depletion. Quantification of mutant abundance demonstrated high replicate reproducibility and close agreement with expected levels of depletion (Supplementary Fig. 3A and B). Despite a ~ 10-fold range in barcode recovery in pools with equal mutant abundance (Supplementary Fig. 3A) – variation that was not due to barcode GC-content (Supplementary Fig. 3C) – we were able to successfully and accurately quantify barcoded mutant depletion at small scale.
Antibiotic exposure and detection of broad interactions on whole pathways and processes
The choice of antibiotic exposure conditions has important implications for the sensitivity of high-throughput experiments. Thus, to enable detection of specific mechanism-related interactions, antibiotic doses were selected to inhibit 20–30% of growth relative to growth without antibiotics, as measured by OD600 29,31,32 (Table 1 and Supplementary Fig. 4). As controls for the synergistic combination of ceftazidime/avibactam (AVI/CAZ), each component was also used at the lower concentration present in the combination as well as higher concentrations that individually inhibited 20–30% of growth. Ampicillin (AMP), fosfomycin (FOS), and CHIR-090 (CHIR) did not attain 20% growth inhibition so each was used at the highest concentration tested (256 µg/mL).
The entire pool of ~ 340,000 unique mutants was inoculated in LB medium at OD600 0.025 (~ 75 CFU/mutant) and allowed to reach early exponential phase (OD600 0.15). The cultures were then exposed to antibiotics (or 1% DMSO solvent control) for 8 hours (~ 10 generations), after which genomic DNA was harvested and used as template for BarSeq. High-output Illumina NextSeq flow cells were used to accommodate ~ 500 reads/gene for each condition and replicate. Resulting barcodes were counted and matched to insertion site, then normalized to Time 0 controls and aggregated across replicates to calculate average per-gene fitness scores 21,33.
Comparison between the DMSO control and each condition revealed hundreds of broad and specific factors that contribute to antibiotic susceptibility (Supplementary Fig. 5). As a first look to reveal effects on whole pathways and processes, the genes significantly affecting fitness in each condition were analysed for enrichment in BioCyc pathways and GO terms (Supplementary Figs. 6–8) 34–37. For negative fitness effects, we observed an enrichment in genes in membrane lipid metabolism pathways (Supplementary Figs. 6–8). Additionally, we found enrichment in many GO terms related to the cell envelope (Supplementary Figs. 7–8). These are, for example, “peptidoglycan metabolic process”, “integral component of the membrane”, and “periplasmic space”. Broadly, these findings are in line with expectations that cell envelope-targeting antibiotics will report on susceptibility determinants in the cell envelope.
Identifying similar hallmarks as other chemical genetics studies would serve as additional validation of our results. For example, although antibiotics act by distinct mechanisms based on their class, many also exert as metabolic perturbations and the induction of reactive oxygen species (ROS) 38,39. We found that disruptions in genes related to purine and pyrimidine metabolism and amino acid metabolism pathways often showed reduced susceptibility to antibiotics, especially the β-lactams (Supplementary Figs. 6–8). Inactivating these genes may slightly reduce metabolic rate and nucleotide pools, both known to affect antibiotic susceptibility 40,41. Conversely, we found that disruptions in several genes related to ROS mitigation increased antibiotic susceptibility. When genes related to polyamine and reductant metabolism pathways were disrupted, susceptibility often increased (Supplementary Fig. 6). This was also detected by GO term enrichment of “response to oxidative stress” and “glutathione metabolic process” (Supplementary Fig. 7). Glutathione and polyamines, such as putrescine, are both known to be important in B. cenocepacia for protection against ROS 42,43. Together, the corroboration of several previous works and expected findings confirms the validity of our BarSeq approach to uncover detailed chemical-genetic interactions at the foundations of antibiotic action.
The Mla pathway is important for envelope integrity and resistance to multiple antibiotics
The Mla pathway functions in retrograde transport of excess phospholipids from the outer membrane to the inner membrane, thereby maintaining an asymmetric, and more impermeable, outer membrane enriched in LPS (Fig. 2A) 4,44. In B. cenocepacia and B. dolosa, defects in the Mla pathway are known to increase susceptibility to large-scaffold antibiotics and serum 45. However, homologous defects in E. coli K-12 and P. aeruginosa PA14 were found to not alter susceptibility to a variety of antibiotics 45. In K56-2, the Mla pathway is encoded by six genes organized in two operons, and possibly two accessory genes (K562_RS01610 and K562_RS01615) in an adjacent operon (Fig. 2B) 45.
In our BarSeq experiment, genes encoding components of the Mla pathway had negative fitness scores for nearly all tested antibiotic conditions (Fig. 2C and Supplementary Fig. 5). Disruptions in mlaFED, generally resulted in greater susceptibility increases, especially for the large scaffold antibiotics (ERY, NOV, and RIF), than did disruption in vacJ and mlaCB (Fig. 2C). Indeed, the average fitness score of the Mla pathway genes negatively correlated with the molecular weight of the antibiotic (Fig. 2D). This indicates the Mla pathway is important for membrane permeability, as large antibiotics are ineffective against Gram-negatives with intact membranes. To support these findings, we used CRISPR-interference (CRISPRi) 46,47 to silence the mlaFEDvacJ and mlaCB operons. Silencing these genes did not result in a growth defect (Supplementary Fig. 9). Using an N-phenyl-1-naphthylamine (NPN) uptake assay 48,49, we found that both of these mutants had substantially increased outer membrane permeability than the control (Fig. 2E). We next reasoned that chemical permeabilization of the membrane may also increase antibiotic susceptibility of K56-2. We found chlorhexidine (CHX), but not polymyxin B (PMB), to greatly increase outer membrane permeability (Supplementary Fig. 10). Consequently, in checkerboard interaction assays, CHX synergised strongly with large scaffold antibiotics and the β-lactams (Fig. 2F). Overall, our findings of broad susceptibility profiles for mutants in the Mla pathway support a unique importance of this pathway in maintaining the permeability barrier of the outer membrane in Burkholderia, similar to a previous report 45.
Antagonising undecaprenyl phosphate recycling causes β-lactam susceptibility, hinders growth, and affects cell morphology
Polysaccharides are important structural and functional components of bacterial cell envelopes, including exopolysaccharides, the O-antigen, peptidoglycan, and protein O-glycosylation. From the BarSeq data, we observed that mutants with disruptions in LPS/O-antigen synthesis (e.g. hldD, wbiGH, ogcA, and K562_RS30805) and protein glycosylation (e.g. ogcABE and pglL) had altered susceptibility to several β-lactam antibiotics (Fig. 3A). To examine if defects in outer membrane permeability were the source of increased antibiotic susceptibility, we assessed NPN uptake of CRISPRi mutants in genes/operons highlighted by the BarSeq experiment. We found that knockdown of genes related to LPS core and O-antigen synthesis and protein glycosylation did not significantly impair outer membrane integrity (Fig. 3B), except for hldD. Thus, increased antibiotic susceptibility is not simply due to increased antibiotic influx alone.
We next reasoned that the enhanced susceptibility of cell envelope glycan pathway mutants to β-lactam antibiotics could be due to limitations in a shared intermediate, the lipid carrier UndP (Fig. 3C). As a carrier, UndP is recycled after a cleavage step removes the linked glycans. UndP intermediates are present at low levels in Gram-negative membranes (< 1% of total membrane lipids) 50–52 and both de novo UndP synthesis and UndP recycling are essential for viability in E. coli 53,54. Therefore, limiting levels of UndP intermediates has major consequences for the bacterial cell.
Two lines of evidence support a link between UndP utilization pathways, peptidoglycan synthesis, and β-lactam susceptibility. First, disruptions in O-antigen and enterobacterial common antigen pathways render morphological defects in E. coli and Shigella flexneri similar to those caused by peptidoglycan defects 55–57. Second, inhibition of de novo UndP synthesis rendered B. cenocepacia and E. coli more susceptible to β-lactams 58,59. We thus reasoned that disruptions preventing or reducing the efficiency of UndP recycling may increase susceptibility to the β-lactams, FR-9, and bacitracin (BAC) due to the connection between UndP and peptidoglycan synthesis. Supporting our hypothesis, the BarSeq experiment showed that disruption of dbcA, encoding a homologue of the E. coli uptA DedA-family UndP flippase important for UndP recycling 60, resulted in susceptibility to β-lactams, FR-9, and BAC (Fig. 3A). To validate the findings of the BarSeq experiment, we assessed susceptibility of CRISPRi mutants in genes related to cell envelope glycan metabolism to AZT, CAZ, and MEM, as representatives of the β-lactams used in the BarSeq experiment. Susceptibility moderately increased upon knockdown of cytoplasmic steps in the protein O-glycosylation pathway (encoded by ogcABEI) and LPS core synthesis (encoded by hldD and wabRwaaLwabQP) (Fig. 3D).
Knockdown of LPS core synthesis genes may cause an accumulation of UndP-O-antigen intermediates in the periplasm as the O-antigen cannot be ligated to a heavily truncated core, thus possibly reducing UndP recycling. To support our genetic evidence for the interactions among UndP utilisation pathways, we used the LpxC inhibitor PF-04, which prevents lipid A formation, in checkerboard assays. We reasoned that exposing cells to PF-04 may cause accumulation of UndP-O-antigen intermediates in the periplasm, similar to knockdown of core biosynthetic genes hldD and wabRwaaLwabQP. Indeed, PF-04 strongly synergised with MEM, CTT, CAZ, AZT, and the isoprenoid synthesis inhibitor FR-9 (Fig. 3E). Interaction with FR-9 suggests PF-04 may cause sequestration of UndP-linked intermediates, while the resulting stress on peptidoglycan synthesis is supported by synergism of PF-04 with the β-lactams. We argue that the observed synergy was not likely due to increased outer membrane permeability as PF-04 did not synergise with the large scaffold antibiotics ERY, NOV, or RIF.
When we silenced LPS core and O-glycosylation genes, we noticed that the antibiotic susceptibility profiles were very similar, regardless of the β-lactam used (Fig. 3D). This may indicate an independence from which peptidoglycan synthesis complex is targeted and instead points to an interaction with UndP levels itself. If UndP sequestration causes β-lactam susceptibility by reducing flux through peptidoglycan synthesis, we expected that reducing the total amount of UndP would produce a similar effect. We then targeted ispDF (encoding early genes in isoprenoid/UndP synthesis) and uppS (also called ispU, encoding UndPP synthase) with CRISPRi. As uppS is an essential gene and repression strongly suppresses growth (Supplementary Fig. 9), we carefully titrated the concentration of rhamnose to suppress growth by 20–30% for further assays. Indeed, knockdown of ispDF and uppS increased susceptibility to AZT, CAZ, and MEM (Fig. 4A). However, knockdown of ispDF moderately increased membrane permeability (Fig. 3B), suggesting that the β-lactam susceptibility of that mutant may be partly due to increased antibiotic influx. In addition to genetically depleting levels of UndP, we also investigated antibiotic interactions with FR-9 and BAC. FR-9 is an inhibitor of Dxr, which catalyzes an early step in isoprenoid biosynthesis 61, while BAC binds UndPP and prevents its recycling 62 (Fig. 1). FR-9 and BAC synergised with many β-lactams, in addition to with each other (Fig. 4B), demonstrating that double targeting at different points within UndP metabolic pathways greatly increases the inhibitory effect. Overall, both chemical and genetic evidence supports our assertion that depletion of free UndP pools causes β-lactam susceptibility.
Lastly, to further enhance the block in UndP metabolism, we aimed to simultaneously disrupt UndP synthesis while provoking an accumulation of UndP-linked glycans. These perturbations are expected to severely reduce free UndP pools, and as UndP is an essential molecule for peptidoglycan synthesis, the resulting effects will be synthetic lethality/sickness. To that end, we first separately deleted hldD, an epimerase required for LPS core saccharide synthesis, and waaL, the O-antigen ligase, in the K56-2::dCas9 background. Mutants of each gene are expected to accumulate UndP-linked O-antigen intermediates. The lack of O-antigen decorated LPS was verified in ΔhldD and ΔwaaL by silver staining LPS extracts, but only the ΔhldD mutant could be complemented in trans (Supplementary Fig. 11). We then targeted ispDF and uppS for CRISPRi knockdown in the ΔhldD and ΔwaaL dCas9 mutants and compared the effects to the K56-2::dCas9 background. Upon induction of dCas9 with rhamnose, knockdown of ispDF and uppS resulted in a double mutant effect with a further decrease in growth (Fig. 5A). Finally, we overexpressed wbiI (encoding an epimerase/ dehydratase required for O-antigen synthesis) and the wzm-wzt O-antigen transporter in the ΔwaaL mutant (Fig. 5B). We reasoned that overexpression of the wzm-wzt O-antigen transporter in the ΔwaaL mutant may reduce free UndP pools by causing accumulation of periplasmic UndP-O-antigen intermediates. As expected, this mutant displayed morphological changes, such as bulging, that are indicative of defects in the peptidoglycan matrix (Fig. 5C). Furthermore, this mutant was also more susceptible to AZT, CAZ, and MEM (Fig. 5D).
Overall, our results support the following model: In wild-type cells, recycling is important to replenish the UndP pools available for the essential process of peptidoglycan synthesis (Fig. 5E). Blockages in UndP utilisation cause sequestration of UndP-glycan intermediates, reducing the efficiency of recycling and the levels of free UndP available for peptidoglycan synthesis. lack of UndP impaires peptidoglycan synthesis increasing susceptibility to β-lactams.
BarSeq reveals the basis for β-lactam/avibactam synergy and rationalizes new effective combinations
AVI/CAZ is a current front-line treatment for many infections caused by multidrug-resistant Gram-negative bacteria. The synergy of the combination is due to avibactam inhibiting a broad spectrum of β-lactamases that degrade ceftazidime 63,64. Studies on Burkholderia β-lactamases have focused on the Ambler class A PenB carbapenemase and the Ambler class C AmpC β-lactamase, of which only PenB is inhibited by AVI 65,66. However, K56-2 encodes a further 19 putative β-lactamase-fold proteins, and it is unknown how/if each contributes to β-lactam resistance, and which is inhibited by AVI.
In the BarSeq experiment, we saw that transposon disruption of only two β-lactamase genes, blapenB and K562_RS32470 (encoding a putative metallo-β-lactamase (MBL) fold protein; Pfam 00753) increased β-lactam susceptibility (Fig. 6A). Although K562_RS32470 is annotated as an MBL, the interaction with AZT make us question this assignment as AZT is a poor substrate for most MBLs 67; however, we did not conduct further experiments to investigate this. Additionally, disruption of penR, the positive regulator of blapenB also increased β-lactam susceptibility (Fig. 6A).
We reasoned that if the targets of AVI are the β-lactamases that degrade CAZ, transposon mutants of said β-lactamases would have a fitness defect in the presence of CAZ because CAZ cannot be degraded. The same mutants would also have a fitness defect in AVI/CAZ as in either case the β-lactamase target is chemically inhibited or genetically disrupted (Fig. 6B). Using the data from our BarSeq experiment, we compared pairs of conditions involved in the AVI/CAZ combination to identify genes important for fitness in one or both constituent conditions. For all comparisons, there were more genes unique to each condition than shared between any two, highlighting strong concentration-dependent physiological effects, even for the same antibiotic (Supplementary Fig. 12). Pair-wise comparison revealed that blaPenB was important for fitness in both CAZ only and AVI/CAZ, while K562_RS32470 was important for fitness in CAZ only (Supplementary Figs. 12 and 6A). None of the other 20 putative β-lactamase-fold proteins were important for fitness in any condition tested here (Supplementary Data 1). Thus, our findings suggest that PenB and K562_RS32470 are the only possible candidate β-lactamase targets of AVI in K56-2.
For validation, we assessed β-lactam susceptibility of CRISPRi knockdown mutants in blaAmpC, blaPenB, and K562_RS32470. In the absence of antibiotics, neither were important for growth (Supplementary Fig. 9). Knockdown of neither blaAmpC nor K562_RS32470 altered the MIC of any of the tested β-lactams (Fig. 6C and Supplementary Table 2). On the other hand, knockdown of blaPenB resulted in marked susceptibility to AMP, TAZ, CAZ, AZT, and MEM (up to 32-fold reduction in MIC) (Fig. 6C and Supplementary Table 2). We reasoned that if PenB is the major β-lactamase in K56-2, then knockdown of blaPenB would result in the same MIC as adding AVI. In other words, the cells would be “blind” to the addition of AVI as the primary target is already knocked down. Indeed, in the presence of AVI, there was no change in MIC upon blaPenB knockdown for CAZ and MEM (Fig. 6C); however, knockdown of penB still reduced the MIC of AZT by 2-fold, suggesting that in the absence of PenB, K562_RS32470 may have a minor contribution to AZT resistance. This pattern is also observed when we measured β-lactamase activity using the chromogenic β-lactam derivative nitrocefin (Fig. 6D). Knockdown of penB reduced β-lactamase activity by ~ 90% and was further inhibited to ~ 98% when AVI was added. There was no effect when K562_32470 was knocked down. Unexpectedly, knockdown of blaAmpC increased β-lactamase activity by 13-fold. Although the MIC of the blaAmpC knockdown mutant was not altered, when we re-examined the data in the context of a dose-response, growth at subinhibitory β-lactam concentrations was substantially greater (Supplementary Fig. 13A). As β-lactamase activity could be inhibited by AVI, albeit at very high concentrations (Supplementary Fig. 13B), we suggest that knockdown of blaAmpC may induce overexpression of blaPenB. Taken together, our genetic and biochemical results demonstrate that in K56-2, PenB is the predominant β-lactamase responsible for degrading clinically relevant β-lactams. Our findings also demonstrate that BarSeq can be used to elucidate the mechanisms and targets of antibiotic potentiation.
The marked β-lactam susceptibility of knockdown mutants in blaPenB, together with the ability of avibactam to inhibit PenA-family β-lactamases in Burkholderia species 68, suggested a broader applicability of AVI/AZT and AVI/MEM combinations. Thus, we assembled a panel of 41 clinical Bcc isolates (including B. gladioli) spanning the last two decades and representing the most commonly recovered species across Canada. Susceptibility to AZT, CAZ, and MEM was assessed with and without 8 µg/mL AVI. Among Bcc species, MIC values of the β-lactams alone varied widely: 2 – >256 µg/mL for AZT; 0.5–32 µg/mL for MEM; 2 – >128 µg/mL for CAZ (Supplementary Table 3). Overall, potentiation by AVI was strongest for AZT and MEM (up to 64-fold MIC reduction) (Fig. 7A). These trends are in line with the changes in susceptibility upon blaPenB knockdown in K56-2 (Fig. 6C). Consequently, and in the context of clinical breakpoints, 24/41 of the Bcc isolates were resistant to AZT without AVI, which was reduced to 2/41 with AVI (Fig. 7B). For MEM and CAZ, 9/41 and 4/41 of the Bcc isolates were resistant without AVI, respectively, and all Bcc isolates were sensitive with AVI (Fig. 7B).
The activity of AZT, CAZ, and MEM was not uniformly potentiated by AVI in all Bcc isolates. Even for K56-2, in which we have demonstrated the importance of PenB, AVI does not potentiate the activity of all β-lactams or even all cephalosporins (Supplementary Table 4). Moreover, even if AVI potentiated the activity of one β-lactam, it did not guarantee potentiation for the others (Supplementary Table 3). Thus, although alternative β-lactamases that are not inhibited by AVI may contribute to β-lactam resistance, they likely only play minor roles in most isolates. Overall, our findings suggest that, in addition to AVI/CAZ, combinations of AVI/AZT and AVI/MEM may be valuable therapeutic options for treating Bcc infection.
Our strain panel also included isolates of other CF pathogens: P. aeruginosa, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. In contrast to the activity in against the Bcc isolates, there was minimal potentiation by AVI, except with highly β-lactam resistant P. aeruginosa and with AZT against S. maltophilia (Supplementary Table 3). As the potentiation of AZT, CAZ, and MEM by AVI was generally weaker in CF pathogens other than the Bcc, this highlights the differences in β-lactamase arsenals and demonstrates the need to perform genome-wide investigations in each species to uncover novel resistance mechanisms. Consequently, we suggest that among CF pathogens, combinations of AVI/AZT, AVI/CAZ, and AVI/MEM may be more tailored for use against Bcc infections.
Cefiderocol uptake is via several TonB-dependent receptors and requires physiological levels of iron for activity
Cefiderocol (CFD) is a novel antibiotic with a catechol siderophore conjugated to a cephalosporin that is structurally similar to CAZ. The siderophore chelates ferric iron and enables active transport into cells by TonB-dependent receptors (TBDRs), resulting in substantially increased potency against a variety of Gram-negative pathogens 18,69,70. Little is known about the activity the activity of CFD in Burkholderia species, except for a few cases of cefiderocol use in compassionate care 71 and as part of large strain panels 19,72 .
To explore the antibiotic mechanism of CFD, we analysed our BarSeq data for chemical-genetic interactions specific to CFD activity. Broadly, interactions were enriched in pathways related to iron and heme metabolism, which was not observed for other β-lactams (Supplementary Figs. 6–7). Additionally, disruptions of β-lactamase genes blaPenB and K563_RS32470 did not affect fitness in CFD (Fig. 6B and 8A). However, disruptions in K562_RS04910 (encoding a TonB-related protein) and K562_RS23150 (encoding a homologue of the P.aeruginosa PAO1 piuA TBDR) reduced susceptibility to CFD (Fig. 8A). Of 24 putative TBDRs encoded by K56-2, disruption of piuA was the only TBDR associated with significantly enhanced fitness in the rich medium conditions of the BarSeq experiment (Supplementary Data 1). We confirmed the involvement of piuA in CFD activity with a CRISPRi knockdown, which showed reduced susceptibility to CFD (4-fold increase in MIC in CAMHB) but not to the structurally related CAZ (Fig. 8B).
Iron acquisition mechanisms, such as TBDRs, are generally upregulated in low iron conditions 73. In P. aeruginosa, the susceptibility to CFD increases with decreasing iron concentrations 70. To test the effect of iron levels on susceptibility of K56-2 to CFD, we used a low iron medium (M9 salts + casamino acids [M9 + CAA]) and high iron medium (CAMHB), which we found by ICP-MS to have 0.61 µM ± 0.07 µM and 6.75 µM ± 0.71 µM total iron, respectively. Contrary what was observed in P. aeruginosas, the MIC of CFD was 8-fold higher in M9 + CAA than in CAMHB for K56-2 (Fig. 8B). This trend was also seen in many Bcc clinical isolates (Supplementary Table 5). Furthermore, lowering iron levels by chelation antagonised CFD in both CAMHB and M9 + CAA (Fig. 8C). While we thought that changes in susceptibility between high and low iron media may be due to reduced piuA receptor expression, knocking down piuA in M9 + CAA caused a further 4-fold increase in MIC (Fig. 8B). Thus, unexpectedly, low levels of iron reduced the activity of CFD in K56-2 and more broadly across Bcc species.
While infection settings are generally iron-limiting 74, the sputum of individuals with severe CF is enriched in iron (62–125 µM compared to ~ 18 µM in a healthy lung)75. To mimic the high iron conditions of the CF sputum, we supplemented the CAMHB and M9 + CAA media with FeCl3. Supplementing M9 + CAA with 25 µM iron resulted in 4-fold lower MIC values (Fig. 8D). At very high iron concentrations (> 100 µM) in CAMHB, the MIC was 4-fold higher (Fig. 8D). These effects reflect the different initial iron concentrations in rich CAMHB and defined M9 + CAA, where adding small amounts of iron equilibrate CFD susceptibility between CAMHB and M9 + CAA. These findings are in agreement with the importance of iron for CFD susceptibility.
We then reasoned that the BarSeq experiment, which was performed in rich LB medium, may not have captured the physiological changes that occur in low iron conditions, such as altered TBDR expression. To further study the link between CFD susceptibility and cell physiology under iron limitation, we constructed a panel of CRISPRi mutants in all 24 putative TBDRs encoded in K56-2, in addition to fur, encoding the Fur transcriptional repressor, and the four tonB paralogues (Supplementary Table 6 and Supplementary Fig. 9). We identified two other receptors, the HmuR heme receptor homologue (K562_RS30495) and a putative CntO pseudopaline receptor homologue (K562_RS10150), that upon knockdown reduced susceptibility to CFD. Additionally, knockdown of the tonB3 homologue also susceptibility to CFD (Fig. 8B). Knockdown of the tonB1 paralogue, however, produced opposite effects, increasing susceptibility (Fig. 8B). Knockdown of fur increased CFD susceptibility at least 4-fold in both CAMHB and M9 + CAA, suggesting that CFD receptor gene expression is repressed by Fur.
Notably, K56-2 was much more susceptible to CFD at all iron concentrations than to the other β-lactams, even when in combination with AVI (Supplementary Table 3). In addition, the Bcc clinical isolate panel showed the same trends. Of the 41 isolates, the MIC50 was 0.5 µg/mL and only eight (20%) were resistant to CFD (Fig. 7B and Supplementary Table 3), demonstrating very potent activity. Susceptibility of other Bcc isolates to CFD was generally not affected by the addition of AVI (Supplementary Table 3). Overall, our findings indicate that while there might be a critical threshold of iron required for CFD activity, CFD MIC values remain well below those of other β-lactams.
Visualization of chemogenomic interactions in a web application
To ease data accessibility, we have made an interactive and visual web app accessible at https://cardonalab.shinyapps.io/bcc_interaction_viewer/. The effects of individual antibiotics can be filtered with customizable gene fitness thresholds and assessed with output tables that display known annotations separated by interactions that either increase or decrease fitness in the selected condition. Additionally, we can update this web app to hold data from future screens. We expect this user-friendly application will add value to our dataset by allowing additional data mining.