Akiguchi I,Pallàs M,Budka H,Akiyama H,Ueno M,Han J et al (2017) SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions. Neuropathology 37(4):293-305. https://doi.org/10.1111/neup.12373
Bittner S,Ruck T,Schuhmann MK,Herrmann AM,Moha ou Maati H,Bobak N et al (2013) Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med 19(9):1161-1165. https://doi.org/10.1038/nm.3303
Blokland A,Honig WRaaijmakers WG (1992) Effects of intra-hippocampal scopolamine injections in a repeated spatial acquisition task in the rat. Psychopharmacology (Berl) 109(3):373-376. https://doi.org/10.1007/bf02245886
Boccia MM,Acosta GB,Blake MGBaratti CM (2004) Memory consolidation and reconsolidation of an inhibitory avoidance response in mice: effects of i.c.v. injections of hemicholinium-3. Neuroscience 124(4):735-741. https://doi.org/10.1016/j.neuroscience.2004.01.001
Boccia MM,Blake MG,Acosta GBBaratti CM (2003) Atropine, an anticholinergic drug, impairs memory retrieval of a high consolidated avoidance response in mice. Neurosci Lett 345(2):97-100. https://doi.org/10.1016/s0304-3940(03)00493-2
Boccia MM,Blake MG,Baratti CMMcGaugh JL (2009) Involvement of the basolateral amygdala in muscarinic cholinergic modulation of extinction memory consolidation. Neurobiol Learn Mem 91(1):93-97. https://doi.org/10.1016/j.nlm.2008.07.012
Chapman CG,Meadows HJ,Godden RJ,Campbell DA,Duckworth M,Kelsell RE et al (2000) Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res Mol Brain Res 82(1-2):74-83. https://doi.org/10.1016/s0169-328x(00)00183-2
Danysz W,Wroblewski JTCosta E (1988) Learning impairment in rats by N-methyl-D-aspartate receptor antagonists. Neuropharmacology 27(6):653-656. https://doi.org/10.1016/0028-3908(88)90189-x
Djillani A,Mazella J,Heurteaux CBorsotto M (2019) Role of TREK-1 in Health and Disease, Focus on the Central Nervous System. Front Pharmacol 10:379. https://doi.org/10.3389/fphar.2019.00379
Ferraguti F,Crepaldi LNicoletti F (2008) Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 60(4):536-581. https://doi.org/10.1124/pr.108.000166
Ferreira-Vieira TH,Guimaraes IM,Silva FRRibeiro FM (2016) Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol 14(1):101-115. https://doi.org/10.2174/1570159x13666150716165726
Fuhrmann M,Bittner T,Jung CK,Burgold S,Page RM,Mitteregger G et al (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat Neurosci 13(4):411-413. https://doi.org/10.1038/nn.2511
Gao Y,Tan L,Yu JTTan L (2018) Tau in Alzheimer's Disease: Mechanisms and Therapeutic Strategies. Curr Alzheimer Res 15(3):283-300. https://doi.org/10.2174/1567205014666170417111859
Goedert MSpillantini MG (2006) A century of Alzheimer's disease. Science 314(5800):777-781. https://doi.org/10.1126/science.1132814
Gu B,Nakamichi N,Zhang WS,Nakamura Y,Kambe Y,Fukumori R et al (2009) Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspartate receptors composed of an NR1/NR2B subunit assembly. J Neurosci Res 87(9):2145-2156. https://doi.org/10.1002/jnr.22021
Hascup KN,Hascup ER,Pomerleau F,Huettl PGerhardt GA (2008) Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice. J Pharmacol Exp Ther 324(2):725-731. https://doi.org/10.1124/jpet.107.131698
Hervieu GJ,Cluderay JE,Gray CW,Green PJ,Ranson JL,Randall AD et al (2001) Distribution and expression of TREK-1, a two-pore-domain potassium channel, in the adult rat CNS. Neuroscience 103(4):899-919. https://doi.org/10.1016/s0306-4522(01)00030-6
Heurteaux C,Guy N,Laigle C,Blondeau N,Duprat F,Mazzuca M et al (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23(13):2684-2695. https://doi.org/10.1038/sj.emboj.7600234
Honoré E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8(4):251-261. https://doi.org/10.1038/nrn2117
Jeong S (2017) Molecular and Cellular Basis of Neurodegeneration in Alzheimer's Disease. Mol Cells 40(9):613-620. https://doi.org/10.14348/molcells.2017.0096
Knox D (2016) The role of basal forebrain cholinergic neurons in fear and extinction memory. Neurobiol Learn Mem 133:39-52. https://doi.org/10.1016/j.nlm.2016.06.001
Lalo U,Palygin O,Rasooli-Nejad S,Andrew J,Haydon PGPankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12(1):e1001747. https://doi.org/10.1371/journal.pbio.1001747
Lauritzen I,Blondeau N,Heurteaux C,Widmann C,Romey GLazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19(8):1784-1793. https://doi.org/10.1093/emboj/19.8.1784
Liu Y,Sun Q,Chen X,Jing L,Wang W,Yu Z et al (2014) Linolenic acid provides multi-cellular protective effects after photothrombotic cerebral ischemia in rats. Neurochem Res 39(9):1797-1808. https://doi.org/10.1007/s11064-014-1390-3
Lu L,Zhang G,Song C,Wang X,Qian W,Wang Z et al (2017) Arachidonic acid has protective effects on oxygen-glucose deprived astrocytes mediated through enhancement of potassium channel TREK-1 activity. Neurosci Lett 636:241-247. https://doi.org/10.1016/j.neulet.2016.11.034
Mahmoud S,Gharagozloo M,Simard CGris D (2019) Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells 8(2). https://doi.org/10.3390/cells8020184
Meeker KD,Meabon JSCook DG (2015) Partial Loss of the Glutamate Transporter GLT-1 Alters Brain Akt and Insulin Signaling in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 45(2):509-520. https://doi.org/10.3233/jad-142304
Min SW,Cho SH,Zhou Y,Schroeder S,Haroutunian V,Seeley WW et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953-966. https://doi.org/10.1016/j.neuron.2010.08.044
Miyasaka T,Shinzaki Y,Yoshimura S,Yoshina S,Kage-Nakadai E,Mitani S et al (2018) Imbalanced Expression of Tau and Tubulin Induces Neuronal Dysfunction in C. elegans Models of Tauopathy. Front Neurosci 12:415. https://doi.org/10.3389/fnins.2018.00415
Mookherjee P,Green PS,Watson GS,Marques MA,Tanaka K,Meeker KD et al (2011) GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model. J Alzheimers Dis 26(3):447-455. https://doi.org/10.3233/jad-2011-110503
Morris RG (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9(9):3040-3057. https://doi.org/10.1523/jneurosci.09-09-03040.1989
Nakanishi SMasu M (1994) Molecular diversity and functions of glutamate receptors. Annu Rev Biophys Biomol Struct 23:319-348. https://doi.org/10.1146/annurev.bb.23.060194.001535
Ota H,Ogawa S,Ouchi YAkishita M (2015) Protective effects of NMDA receptor antagonist, memantine, against senescence of PC12 cells: A possible role of nNOS and combined effects with donepezil. Exp Gerontol 72:109-116. https://doi.org/10.1016/j.exger.2015.09.016
Power AE,Vazdarjanova AMcGaugh JL (2003) Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Mem 80(3):178-193. https://doi.org/10.1016/s1074-7427(03)00086-8
Revett TJ,Baker GB,Jhamandas JKar S (2013) Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38(1):6-23. https://doi.org/10.1503/jpn.110190
Riederer PHoyer S (2006) From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm (Vienna) 113(11):1671-1677. https://doi.org/10.1007/s00702-006-0591-6
Shankar GM,Bloodgood BL,Townsend M,Walsh DM,Selkoe DJSabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866-2875. https://doi.org/10.1523/jneurosci.4970-06.2007
Smith JW,Evans AT,Costall BSmythe JW (2002) Thyroid hormones, brain function and cognition: a brief review. Neurosci Biobehav Rev 26(1):45-60. https://doi.org/10.1016/s0149-7634(01)00037-9
Sofroniew MVVinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7-35. https://doi.org/10.1007/s00401-009-0619-8
Sun Y,Yang J,Hu X,Gao X,Li Y,Yu M et al (2018) Conditioned medium from overly excitatory primary astrocytes induced by La(3+) increases apoptosis in primary neurons via upregulating the expression of NMDA receptors. Metallomics 10(7):1016-1028. https://doi.org/10.1039/c8mt00056e
Tom SE,Hubbard RA,Crane PK,Haneuse SJ,Bowen J,McCormick WC et al (2015) Characterization of dementia and Alzheimer's disease in an older population: updated incidence and life expectancy with and without dementia. Am J Public Health 105(2):408-413. https://doi.org/10.2105/ajph.2014.301935
Tsolaki M,Sakka V,Gerasimou G,Dimacopoulos N,Chatzizisi O,Fountoulakis KN et al (2001) Correlation of rCBF (SPECT), CSF tau, and cognitive function in patients with dementia of the Alzheimer's type, other types of dementia, and control subjects. Am J Alzheimers Dis Other Demen 16(1):21-31. https://doi.org/10.1177/153331750101600107
Vivier D,Bennis K,Lesage FDucki S (2016) Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target? J Med Chem 59(11):5149-5157. https://doi.org/10.1021/acs.jmedchem.5b00671
Wang W,Liu D,Xiao Q,Cai J,Feng N,Xu S et al (2018) Lig4-4 selectively inhibits TREK-1 and plays potent neuroprotective roles in vitro and in rat MCAO model. Neurosci Lett 671:93-98. https://doi.org/10.1016/j.neulet.2018.02.015
Winters BDBussey TJ (2005) Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. Eur J Neurosci 21(8):2263-2270. https://doi.org/10.1111/j.1460-9568.2005.04055.x
Woo DH,Han KS,Shim JW,Yoon BE,Kim E,Bae JY et al (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151(1):25-40. https://doi.org/10.1016/j.cell.2012.09.005
Yarishkin O,Phuong TTT,Bretz CA,Olsen KW,Baumann JM,Lakk M et al (2018) TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells. J Gen Physiol 150(12):1660-1675. https://doi.org/10.1085/jgp.201812179
Yi JH,Pow DVHazell AS (2005) Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury. Glia 49(1):121-133. https://doi.org/10.1002/glia.20099