Adjuvant therapy by high-speed burr after intralesional curettage is a common surgical procedure. To evaluate the correlation between high-speed burring and local tumor seeding, we used luminescent bone cement to simulate the tumor cells. Surgical management of a local aggressive bone tumor, such as a GCT or low-grade chondrosarcoma, includes intralesional curettage or resection. When performing intralesional curettage, the use of a power burr to enlarge the cavity 1 cm to 2 cm in all directions is considered standard procedure [10]. However, aggressive bone tumors such as GCTs currently present a treatment challenge, due to local recurrence rates of 8–62% and metastatic rates of 1.5–7% [11].
Compared to wide excision, intralesional curettage offers an opportunity to preserve the joint and provides better postsurgical limb function. However, the recurrence rate is a concern when intralesional curettage is performed. Lausten et al reported their results with 31 GCT cases treated between 1954 and 1987. Among 18 patients treated with intralesional curettage, 10 (56%) had local recurrences [12]. Malek et al reported a study of 40 patients with long bone GCT treated with curettage, burring, bone grafting, and without any adjuvant treatment between 1997 and 2002. The local recurrence rate within the first 30 months of surgery was 32.5% [13]. Li et al reported the outcome of 179 patients treated for GCT between 1998 and 2010. The local recurrence rate of intralesional curettage was 41.9% [14]. Thus, although the use of a high-speed burr is considered a standard procedure, the efficacy and the potential of contamination are still worth considering.
In order to explore the influence of the different intraosseous tumor locations, we divided the locations into intraosseous wall and intraosseous bottom. However, after comparing the area wall and area bottom, we found no differences in the intensity of the luminescent bone cement spray. Both areas had similar luminescent bone cement spread after burring, and both caused some degree of contamination. Therefore, the tumor seeding over surrounding areas that is caused by a high-speed burr will happen no matter where the burr is used. This type of tumor seeding may have contributed to potential local tumor recurrence.
The results demonstrated that around 66% of seeding tumor was located in the 10-cm circle of the surgical field where bone was burred. Between 10 cm and 20 cm, the proportion of seeding tumor was around 30%. Beyond 20 cm, the proportion of seeding tumor declined to 5%. The intensity decreased as the distance increased. According to the experiment results, adjuvant therapy by high-speed burr may cause tumor local seeding and local recurrence. Therefore, in order to reduce the chances of tumor spreading during operation, adequate protection and irrigation should be used routinely during high-speed burring.
Another reason for local tumor seeding is contamination from the surgeon’s glove or other surgical instruments. In this study, we found luminescent bone cement not only in the surgical field but also sprayed over the surgical glove. A case report study showing a donor site over the anterosuperior iliac spine, representing metastasis from the distal tibia GCT, suggests that residual bone over the glove can cause contamination and implantation of tumor at the graft harvesting site [15]. To decrease the chances of recurrence due to bone seeding via the residual bone over the glove, surgeons should change their gloves frequently.
To prevent tumor seeding during burring, we wondered if using a handpiece cover over the burr could prevent tumor spread. In the section of the test area bottom, the luminescent bone cement spray in circle III decreased significantly after the handpiece was covered. However, this increased the spread of the luminescent bone cement within a 10-cm surgical field. This result suggests that handpiece coverage of the burr may prevent the tumor from spreading beyond 20 cm. However, it will also increase tumor spread closer than 10 cm. The intensity over the glove declined from 17–3% when burring the area of the wall (p = 0.022). Meanwhile, the intensity over the glove decreased from 10–1% when burring the area of the bottom (p = 0.018). This suggests that the coverage cannot prevent the luminescent bone cement spray from contaminating the surgical area. However, the use of coverage can reduce the luminescent bone cement spray on the glove.
A benign aggressive bone tumor such as a GCT can cause pathological fracture or soft tissue extension. The recurrence rate will increase [14].When van der Heijden et al reviewed a series of 48 patients with pathological fractures due to GCTs, the authors found that the recurrence rate was higher after curettage with adjuvant therapy when compared with resection alone (30% versus 0%, respectively). Recurrence risk appears higher with extension into soft tissue. [16] High-speed burring may break the intraosseous structure, which would eventually lead to pathological fracture. Meanwhile, the tumor spread to the surrounding area after high-speed burring can be regarded as a kind of soft tissue extension.