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Abstract

The Early Cretaceous paleoclimate has significant influence on global ecosystem and abundant clues were recorded in both marine and terrestrial sediments.
However, much less studies were conducted on the terrestrial strata than the marine strata, leading to the significance of the Early Cretaceous paleoclimate in
terrestrial systems is currently unclear. In this study, we present the terrestrial sedimentary characteristics and geochemical data of the upper member of the
Lower Cretaceous Liupanshan Group (Liwaxia, Madongshan and Naijiahe formations) in the Liupanshan Basin (North China) and revealed the evolution of
paleoenvironment and paleoclimate recorded in the terrestrial lake. The results show that the total REE concentrations of samples from these formations
range from 79.94 to 195.54 ppm, 76.94 to 162.37 ppm, and 30.06 to 205.78 ppm, respectively. All samples display obvious negative Eu anomaly and
negligible Ce anomaly with the enrichment of LREE and depletion of HREE. These mudstones were rich in Na,0, TFe,05 and several trace elements (e.g., Ba,
Sr, and Rb) and depleted in other elements (e.g., Al,05, Ca0, Th, Zr, and Hf,). The major element composition and other geochemical indicators (e.g., CIA)
indicate that the collected mudstones have experienced weak weathering during transportation. Based on the geochemical characteristics, the source of the
Liwaxia-Naijiahe Formation has a felsic provenance, derived from the predominantly acidic magmatic rocks in the Qinling-Qilian Orogenic Belt. Multiple
geochemical indicators show that the Liwaxia Formation was deposited in a semiarid-arid, anoxic, and low-moderate salinity environment, while the
Madongshan-Naijiahe Formation were deposited an arid, anoxic, and high salinity environment. As a typical terrestrial salified lake in North China, the
salinization of the sedimentary water bodies and the formation of black shales in the Madongshan-Naijiahe Formation might be related to an oceanic anoxic
event in the hothouse climate in the Early Cretaceous.

Introduction

The Cretaceous is the unique period in Earth’s history and featured by several abnormal geological events including activity of mantle superplume (Larson
1991), extraordinary igneous events (Larson 1991; Jones and Jenkyns 2001), normal superchron (Helsley and Steiner 1969; Cronin et al. 2001), and eruption
of Large Igneous Provinces (LIPs; Schlanger et al. 1981; Larson 1991; Tarduno et al. 1991). These geological events further result in global paleoclimate and
paleoecosystem fluctuations (e.g., Hu 2005), which were documented in ocean anoxic event (OAEs; Schlanger and Jenkyns 1976; Leckie et al. 2002; Jenkyns
2003), ocean red beds (ORBs; Hu et al. 2005, 2006, 2012a, 2012b; Wang et al. 2005, 2009), and biotic turnovers and mass extinctions (Leckie et al. 2002).
More importantly, the Cretaceous is also typified as long-term “greenhouse state” (Bice et al. 2006). Multi-proxy records and climate simulations show that the
Cretaceous period underwent high atmospheric CO, concentrations and sea levels (Bice and Norris 2002; Huber et al. 2002; Wang et al. 2014; O'Brien et al.
2017), extreme warmth of tropical sea surface temperatures (SSTs; Pearson et al. 2001; Norris et al. 2002; Wilson et al. 2002), warm deep-ocean temperatures
(Friedrich et al. 2012). These paleoclimate reconstructions were largely derived from marine sedimentary successions, however, the record in terrestrial strata
is rarely reported and the significance of the Cretaceous paleoclimate in terrestrial contexts in unclear. Some paleoclimate events also affected terrestrial
ecosystems, such as frequent OAEs (Ludvigson et al. 2010; Li et al. 2013; Kaiho et al. 2014) and strengthening the study of terrestrial records can provide
important information in revealing various features of the Cretaceous greenhouse climate (Zhang et al. 2020). Therefore, more research on terrestrial
sedimentary successions is necessary. Furthermore, given current global warming trends, the study of Cretaceous warming events is also of great significance
for our understanding the global warming today and evaluating the its ecological influence in the future.

Lower Cretaceous continental strata were widely deposited in the sedimentary basins of the northern China (Cao 2010, 2018; Xi et al. 2019). The Cretaceous
Liupanshan Basin in the northwestern China, situated in the northern mid-latitudes of the North China Block (NCB), contains continues terrestrial fluvial-
lacustrine sedimentary record available for the Cretaceous paleoenvironmental reconstructions (Dai et al. 2010; Liang et al. 2022). The Liupanshan Group
contains abundant flora and fauna fossils including Lycoptera, Caddisfly, oncolite, and Pseudofrenelopsis (Du et al. 2014; He et al. 2014; Liang et al. 2022)
and yield the age of 127 ~ 100 Ma by magnetostratigraphic data (Dai et al. 2009). These data could provide high-resolution natural archives of the
paleoenvironment and paleoclimate evolution of this terrestrial basin. In the past decades, the Lower Cretaceous strata in the Liupanshan Basin (Liupanshan
Group) have received significant attention due to its hydrocarbon exploration potential (e.g., Zhao et al. 2013; Han et al. 2019; Ma et al. 2021; Zhang et al.
2022). Nevertheless, the detailed paleoclimate studies were rarely carried out. The gypsum-salt rocks and black shale widely distributed in the Lower
Cretaceous strata in the Liupanshan Basin may record the Cretaceous greenhouse climate on the terrestrial system. Previous studies demonstrated that the
certain trace elements are suited to infer paleoenvironment, provenance, tectonic setting and other geological information related to their deposition (Wang et
al. 2018 and references therein). Especially, trace elements and REEs were widely used to reconstruct paleoclimate and paleoredox conditions (e.g., Tanaka et
al. 2007; Zanin et al. 2010; Bai et al. 2015). In this study, we present geochemical study for the Lower Cretaceous strata in the Liupanshan Basin. Combined
with previous sedimentary, petrographic, and paleontological analysis, some significant information about paleoenvironment conditions, provenance, and
evolution history of this sedimentary basin are discussed. The results of this study could help us to decipher the Cretaceous greenhouse climate records in
continental strata and better understand the impact of the Early Cretaceous paleoclimate fluctuations on the biological and sedimentary evolution of
paleolakes.

Geological Background

The Liupanshan Basin in the Early Cretaceous is situated in a special tectonic position, which is bounded by the Ordos Block, the Alxa Block, the Hexi Corridor
Belt, and the Qinling-Qilian Orogenic Belt. The basin is now featured by an arcuate tectonic belt and a series depressions and uplifts distribution along the arc-
shaped faults under the regional compressions. The Liupanshan area underwent multiple tectonic events during the Phanerozoic, characterised by complex
structure characteristics and multiperiod stratigraphical break (Liu et al. 2005; Li et al. 2013; Zhao et al. 2020). The early evolution of this area was controlled
by the evolution of Paleo-Qilian Ocean (Zhao et al. 2016), while transformed to an intracontinental setting in the Early Mesozoic (Darby and Ritts 2002), and
has close relationship with the Ordos Basin (Bai et al. 2006; Liu et al. 2006; Zhao et al. 2006). After the Late Jurassic tectonic event separated the Liupanshan
area from the Ordos Basin, the Liupanshan Basin entered into its independent evolution stage (Bai et al. 2006). During the Early Cretaceous, this basin was
located in the northeastern part of the Neotethys Ocean and southwestern part of NCB in paleolatitude 31°N with a subtropical climate zone (Fig. 1a) (Yin
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1988; Sun et al. 2001). The tectonic deformation and stress field inversion of the Liupanshan Basin revealed that the basin was downfaulted in the Early
Cretaceous and a thick fluvial-lacustrine sequences (Liupanshan Group) were deposited (Fig. 1c) (Shi et al. 2006). Since the latest Early Cretaceous, the
Liupanshan Basin was inversed and experienced regional uplift under the NW-SE compression, resulting in the eventually disappear (Shi et al. 2006; Zhao et
al. 2020)

The Liupanshan Basin extends northwest with an inverted triangle shape, and can be divided into two primary structural units (the central depression and the
eastern slope) and 10 secondary structural units including 5 sags, 3 highs and 2 fault terraces (Huan et al. 2011; Chen 2018; Ma et al. 2021) (Fig. 1b). The
Lower Cretaceous strata (Liupanshan Group) in the basin is divided into Sangiao Formation, Heshangpu Formation, Liwaxia Formation, Madongshan
Formation and Naijiahe Formation (Fig. 1c, 2).

The Liupanshan Group is in unconformity contact with the upper and lower strata, while the 5 formations within are conformable contact (Cui et al. 2013;
Chen 2018). The Sangiao Fm. is mainly composed of conglomerate, breccia and pebbly coarse sandstone, which belongs to piedmont alluvial facies deposit
(Fig. 3). The Heshangpu Fm. mainly consists of sandstone and fine sandstone with siltstone and mudstone, belonging to fluvial deposit (Fig. 3). The Liwaxia
Formation is a succession of shallow to semi-deep lacustrine deposits that are dominantly purple-red and gray-green sand-mudstone (Fig. 3). The
Madongshan Formation and Naijiahe Formation are generally composed of mudstone, shale and limestone with gypsum, which belong to deep lacustrine-
saline lacustrine deposits (Fig. 3). Macrofossils such as plants, fishes, and insects are sporadically found in the Madongshan Fm (Li et al. 2013). In general,
from bottom to top, the Cretaceous sequence in the Liupanshan Basin underwent the transformation process from piedmont-river facies to lake-saline
lacustrine facies.

Sampling And Analytical Methods

To determine the geochemical features of the Cretaceous Liupanshan Basin, we selected Huoshizhai section in the central basin. A total of 23 mudstone
samples were collected from the Huoshizhai section in the Liupanshan Basin: seven, six, and ten samples were from the Liwaxia Fm., Madongshan Fm., and
Naijiahe Fm., respectively. The samples were collected after removing the weathering surfaces by digging to about 0.2 m. To minimize the influence of
weathering and other contamination, all samples were placed in sealed plastic bags and sent to the laboratory for the subsequent experiments.

Whole-rock major and trace elements of studied samples were analyzed at the State Key Laboratory of Continental Dynamics, Northwest University, China.
Fresh chips of whole rock samples were powdered to ~ 200 mesh using a tungsten carbide ball mill. Major elements were analyzed using a Rikagu RIX 2100
X-ray fluorescence (XRF) and trace elements were analyzed by an Agilent 7500a inductively coupled plasma mass spectrometry (ICP-MS) using United States
Geological Survey (USGS) and international rock standards (BHVO-2, AGV-2, BCR-2 and GSP-1). For the trace element analysis, sample powders were digested
using an HF + HNO; mixture in high-pressure Teflon bombs at 190°C for 48 hours. The analytical precision and accuracy for most of the major elements and
trace elements are better than 5% and 10%, respectively (Liu et al. 2007a).

Analytical Results
Major element geochemistry

Major element contents of these mudstones of Liupanshan Basin are listed in Table 1. Major element SiO, is obviously enriched in these mudstones, which is
ranges from 7.36—57.56%, with an average value of 38.69%, less than that of the upper continental crust (UCC). The content of Al,05 (between 2.14% and
19.98%, the average proportion is 11.85%) and CaO (between 0.71% and 37.55%, the average proportion is 15.73%) are also lower than those of the UCC. The
average content of Na,0 (1.44%) and TFe,04(4.52%) are higher than that of the UCC. The abundances of Mg0, K,0, TiO,, MnO and P,05 are all slightly lower
than that of the UCC.
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Table 1
Concentrations of major-element oxides in samples from the Liupanshan Basin (units in %)

Sample SiO, Al,O; TiO, Fe,03 MnO Mgo CaO Na,0 K,O0 P,05 SO; LOI Total AlL,05/TiO, CIA ICV
g_?(-ZO- 5746 16.68 0.70 5.90 0.004 2.63 3.01 0.63 587 014 0.02 7.13 100.16  23.9 66.5 1.45
93(-20- 18.77 4.89 021 142 0.014 1.76 37.55 0.41 195 012 0.0 3217 99.36 22.8 58.5 1571
93(—20— 5712 1727 071 6.29 0.000 3.46 2.47 0.62 6.12 0.17 0.06 6.14 100.42 245 66.6 1.49
21—20— 50.29 17.09 0.69 6.70 0.049 299 6.17 2.57 4.00 0.21 0.05 9.44 100.23 247 572 190
gt)_,(-ZO- 57.56 1649 0.69 5.79 0.031 255 3.01 0.62 575 0.14  0.01 6.63 99.25 24.0 66.6 1.44
gg(-ZO- 56.88 16.78 0.70 6.05 0.023 3.25 241 0.61 585 0.17 0.04 6.69 99.45 241 66.8 1.47
93(-20- 4960 1639 0.67 6.42 0.076 290 5.97 2.53 390 020 0.04 1047  99.16 24.4 56.7 1.92
gé(-ZO- 49.76 1480 0.59 526 0.059 341 8.24 1.72 362 016 0.13 12.58 100.33 25.0 60.7 2.33
23(—20— 19.95 525 022 214 0.045 8.85 28.09 0.91 126 0.11 0.42 32.69 99.93 243 546 14.87
?8(-20- 4096 11.83 0.48 434 0.054 8.25 1036 1.23 288 0.14 0.15 19.54 100.22 246 62.2 4.08
g;(-ZO- 49.79 1522 059 540 0.038 3.50 8.40 1.76 365 016 0.14 11.47 100.12 256 61.0 231
?%(-20- 19.71 542 022 219 0.019 874 28.15 0.86 131 012 039 3270 99.82 247 56.1 14.37
g%(-ZO- 40.86 1224 049 4.51 0.032 8.49 10,60 1.12 296 0.14 0.16 18.46 100.06 24.8 64.0 4.03
QZ(—ZO— 46.19 1484 0.54 555 0.080 6.37 6.56 1.88 343 0.1 0.03 1446 100.04 27.6 60.0 2.63
g%(—ZO— 52.06 1998 0.76 7.92 0.019 3.90 0.71 3.38 429 019 0.09 7.19 100.49 26.2 64.4 137
gg(-ZO- 4455 1450 0.59 536 0.088 4.31 8.75 4.01 352 008 246 1222 10045 248 46.0 286
?;(-20- 4271 1348 0.51 490 0.061 7.25 9.60 2.66 275 021 0.17 16.10 100.41 26.4 53.5 3.8
gg(-ZO- 3113 7.94 032 298 0.028 4.61 2443 126 223 0.1 1.08 2334 9947 24.5 547 7.93
g&(-ZO- 11.37 278 012  0.95 0.006 1.07 3428 0.54 0.65 0.03 3455 1278 99.12 23.4 529 2427
28(—20— 1424 3.70 0.16  1.45 0.022 3.37 29.60 0.60 0.89 0.05 3435 11.51 99.92 23.9 55.7 17.70
?%(—20— 2679 7.83 031 347 0.037 6.21 2337 1.69 1.79 014 1.42 26.99 100.05 251 51.1 837
E%(—ZO— 4482 1504 059 7.3 0.071 6.86 6.55 1.35 424 027 0.06 13.45 10042 253 62.5 275
T%(-ZO- 7.36 2.14 0.06 1.83 0.154 1844 2715 0.15 0.44 0.04 0.09 4169 99.55 334 68.9 4581
E%(-ZO- 5746 16.68 0.70 5.90 0.004 2.63 3.01 0.63 587 014 0.02 7.13 100.16  23.9 66.5 1.45

LOI - loss on ignition; CIA - chemical index of alteration; CIW - chemical index of weathering; *data is from Yang et al. (2011).

Zheng et al. (2015) proposed a ratio of K,0/Al,05 to reflect the status of minerals mainly controlled by major elements, among which the value of K,0/Al,04
in sedimentary rocks mainly dominated by clay minerals is generally less than 0.3 (Fig. 4). The K,0/Al,05 content of mudstone samples ranges from 0.20 to
0.40 in Liupanshan Basin, with an average value of 0.26 (Fig. 4). The ratio of Liwaxia Formation is over 0.3, while those of the Madongshan Formation and
Naijiahe Formation are less than 0.3, indicating that the major elements in these two formations are mainly controlled by clay minerals, and the content of K-
feldsparis very low.
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Trace element geochemistry

Table 2 shows the contents of the trace elements of the collected samples. On average, the concentrations of Ba (average of 460.42 ppm), Sr (average of
835.04 ppm) and Rb (average of 108.38 ppm) are dominant in the trace elements, while the others are lower than 100 ppm. Compared with the UCC and the
Post Archean Australian Shale (PAAS), the Srin the mudstone samples are enriched (the mean is 835.04 ppm) (Fig. 4). The abundance of Y (avg. 20.67) and
Cu (avg. 32.61) are similar to those of the UCC, but lower than those of the PAAS. The contents of Ba (between 70.59 ppm and 1575 ppm, the mean is 460.42
ppm) are also less than that of the UCC and PAAS. The Rb contents are slightly lower than that of the PAAS. The other elements (e.g., Th, Zr, Hf, Sc, V, Cr, Co,
Ni,) are relatively depleted in the UCC, and are also significantly lower than the PAAS. All mudstone samples are enriched in U, while Nb, Zr and Ti are depleted
(Fig. 5). It is noteworthy that Sr is depleted in the Liwaxia formation, but it is enriched in the Madongshan and Naijiahe Formations, which is related to the
positive correlation between Sr abundance and paleosalinity.
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Table 2
Concentrations of trace elements in samples from the Liupanshan Basin (units in ug/g)

Sample
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NX-20-
25

NX-20-
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Av
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NX-20-
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32

NX-20-
33

Av

NX-20-
34

NX-20-
35

NX-20-
36

NX-20-
37

NX-20-
38

NX-20-
40

NX-20-
41

NX-20-
42

NX-20-
43

NX-20-
44

Av
ucc

Sc
19.07

9.81

18.87

20.51

12.74

13.56

13.66

15.46
12.68

4.85

10.37

17.51

8.04

14.13

11.26
16.00

21.11

15.91

13.63

8.73

2.04

2.75

7.60

14.89

222

10.49
14

\'
130.50

49.43

135.10

113.80

123.66

133.77

107.13

113.34
122.36

46.27

101.32

127.00

47.08

103.20

91.21
105.20

133.60

107.90

95.47

64.55

20.02

22.84

76.28

125.80

57.01

80.87
107

Cr
70.35

23.02

74.98

70.82

89.67

90.93

95.86

73.66
78.95

29.23

104.32

66.13

25.75

57.73

60.35
60.86

85.77

60.28

56.72

36.03

12.37

17.04

39.31

85.59

117.8

57.18
83

Co
15.25

5.506

11.19

18.32

13.30

7.84

14.28

12.24
10.61

4.11

8.54

14.45

7.949

14.19

9.97
16.23

20.22

16.69

14.6

12.86

5.573

6.132

13.17

20.66

16.64

14.28
17

Ni
34.01

18.19

26.84

43.55

39.14

31.34

45.65

34.10
33.79

11.92

41.72

35.46

18.77

30.74

28.73
32.97

49.62

36.70

28.59

27.75

156.32

16.98

30.90

38.23

25.22

30.23
44

Cu
73.32

18.85

314

24.89

70.04

2474

18.23

37.35
36.33

12.92

32.46

40.44

14.82

35.95

28.82
34.34

52.82

33.27

22.13

27.03

10.08

9.544

32.62

23.67

70.17

31.57
25

Zn
280.9

70.55

103.9

100.8

246.61

74.03

74.22

135.86
62.49

21.21

49.77

79.81

29.24

68.56

51.85
62.34

124

70.07

69.68

36.65

14.55

18.62

65.09

106.6

69.64

63.72
71

Rb
237.8

59.0

240.5

132.2

254.22

260.06

154.02

191.12
136.15

47.38

112.79

133.6

46.0

106.6

97.08
124.8

167.9

116.6

113.3

78.0

21.6

28.8

65.0

153.5

17.3

88.68
112

Sr
140.2

892.8

183.8

230.9

145.04

193.06

233.04

288.41
302.12

437.13

1011.75

308.3

456.5

1069

597.47
680.7

2723

592.4

513.4

2041

2868

2160

1787

116.6

120.1

1360.22
350

Y
29.50

13.50

23.32

33.48

26.49

21.33

28.50

25.16
21.74

10.97

18.96

24.51

11.99

20.79

18.16
25.93

32.41

28.81

23.14

16.47

5.26

6.64

15.90

26.29

9.37

19.02
22

Zr
178.5

50.8

131.3

123.7

175.78

137.86

120.01

131.14
131.31

52.37

129.76

1213

66.1

104.2

100.84
105.3

129.7

107.6

104.0

74.7

25.5

27.9

58.7

112.3

12.9

75.86
190

Nb
11.8

3.802

11.34

11.79

15.57

14.86

14.59

11.96
13.32

5.16

11.13

10.42

3.939

8.776

8.79
9.417

11.95

10.23

8.892

6.118

1.884

2.399

5.905

11.47

1.226

6.95
12

Cs
14.23

3.285

13.71

12.85

12.73

12.83

11.55

11.60
9.72

3.15

7.67

10.77

3.64

8.276

7.20
9.503

30.2

7.661

10.68

5.298

1.691

2.214

5.537

18.98

1.829

9.36
4.6

Ba
4129

283.7

1575

433.5

395.5

1518.9

4250

720.64
351.9

135.9

408.0

385.1

145.3

434.5

310.10
546.3

3949

530.8

435.4

603.1

365.8

142.8

216.4

378.6

70.59

368.47
550

Hf
4.877

1414

3.773

3.624

4.492

3.640

3.279

3.59
3.485

1.391

3.380

3.529

1.848

3.032

2.78
3.195

3.928

3.199

3.035

2.181

0.703

0.856

1.719

3.291

0.388

2.25
5.8
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Table 2

(Continued)
Sample La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb
91)(-20- 37.65 73.88 8.58 32.45 6.353 1.286 6.104 0.934 5.024 1.004 3.052 0.427 2.869
93(-20- 18.65 33.53 3.48 13.04 2.391 0.518 2.349 0.381 2.130 0.418 1.304 0.190 1.356
23(—20— 29.50 57.94 6.78 25.22 4.878 0.916 4.588 0.728 3.829 0.791 2.403 0.361 2.338
22(—20— 40.80 80.72 9.10 34.87 6.930 1.432 6.685 1.031 5.724 1.100 3.214 0.449 3.036
gt)_’(-ZO- 36.01 72.31 8.55 29.79 5.955 1.18 5.601 0.79 4.458 0.91 2.546 0.39 2.605
gg(-ZO- 29.78 59.17 7.03 25.31 4.920 1.31 4.464 0.63 3.592 0.75 2.134 0.33 2.210
y;(-ZO- 39.26 80.44 9.21 32.16 6.416 1.30 6.104 0.86 4.799 0.97 2.698 0.41 2.694
Av 33.09 65.43 7.53 27.55 5.41 1.14 5.13 0.76 4.22 0.85 2.48 0.37 2.44
yg);(-ZO- 32.64 65.39 7.37 26.22 5.115 1.01 4.764 0.66 3.706 0.75 2.081 0.32 2.167
%(-20- 16.89 32.98 3.66 12.99 2.504 0.49 2.446 0.34 1.881 0.38 1.048 0.16 1.022
ga(—20— 26.65 54.77 6.10 21.84 4.363 0.89 4.101 0.57 3.176 0.65 1.841 0.28 1.889
?1)(—20— 34.91 68.58 7.65 28.57 5.394 1.091 4.902 0.784 4176 0.813 2.481 0.353 2.313
g%(QO- 17.64 34.41 3.73 13.95 2.710 0.512 2.482 0.390 2.025 0.408 1.145 0.171 1.044
?%(-20- 27.31 55.50 6.04 22.45 4.423 0.893 4.310 0.677 3.581 0.706 2.197 0.295 1.993
Av 26.01 51.94 5.76 21.00 4.08 0.81 3.83 0.57 3.09 0.62 1.80 0.26 1.74
?1)1(-20- 33.00 64.63 7.36 27.79 5.454 1.154 5.318 0.839 4.565 0.887 2.600 0.341 2.278
g;(-ZO- 43.64 84.97 9.86 36.48 7.306 1.447 6.720 1.076 5.773 1.126 3.364 0.477 3.091
g{))(-ﬂ)- 38.51 79.11 8.64 31.86 6.168 1.264 5.921 0.947 4.968 0.955 2.883 0.377 2.629
g;(—20— 31.62 63.26 6.97 25.54 5.125 0.980 4.571 0.734 3.923 0.782 2.353 0.335 2.226
&)3(-20— 21.88 43.99 4.85 18.27 3.394 0.665 3.352 0.514 2.771 0.536 1.684 0.235 1.496
T())(QO- 6.37 12.50 1.38 523 1.007 0.197 1.000 0.168 0.853 0.177 0.537 0.070 0.501
21)(-20- 8.63 17.31 1.88 717 1.426 0.257 1.213 0.211 1.145 0.225 0.662 0.100 0.620
E%(-ZO- 21.45 43.75 476 17.97 3.236 0.631 3.351 0.499 2.703 0.515 1.606 0.229 1.471
E%(—ZO— 39.62 80.50 8.94 33.28 6.327 1.126 5.584 0.866 4.656 0.885 2.539 0.354 2.206
?3’(—20— 12.10 22.94 2.34 8.61 1.587 0.340 1.735 0.274 1.412 0.299 0.847 0.124 0.765
Av 25.68 51.30 5.70 21.22 4.10 0.81 3.88 0.61 3.28 0.64 1.91 0.26 1.73
ucc 30 64 7.1 26 4.5 0.88 3.8 0.64 3.5 0.8 2.3 0.33 2.2 0.32

Note: 8Eu = Euy/(Smy x Gdy)'/?; 8Ce = Cey/ (LapxPry )72, N stands for chondrite normalized values, the chondrite data are from Sun and McDonough, 198¢

Page 7/23



Rare earth element geochemistry

The concentrations of REE (rare earth elements) and some other parameters are presented in Table 2. The total amount of rare earth elements (3 REE) ranges
from 30.06 to 205.78 ppm with an average of 132.24 ppm (Fig. 4), which are lower than those of the PAAS (183.00 ppm) and North American Shale
Composite (NASC, 173.21 ppm). The LREE (light rare earth elements) contents of mudstones from the Liwaxia, Madongshan and Naijiahe formations are
significantly enriched relative to HREE (heavy rare earth elements), and the patterns exhibit pronounced fractionations between the LREE (ranges from 26.68 to
183.70 ppm, average of 118.55 ppm) and HREE (ranges from 3.38 to 21.69 ppm, average of 13.69 ppm). The average > HREE and Y LREE contents are lower
than those of the NASC and PAAS, and the LREE/HREE (between 7.89 and 9.75, average of 8.68) is also slightly lower than that of the PAAS but slightly higher
than NASC (Fig. 4), indicating the slight enrichment in the LREE. The chondrite-normalized REE patterns are shown in Fig. 5. They are marked by significantly
sloping LREE trends accompanied by flat HREE trends and the distribution patterns of the three groups are basically similar, with 8Eu ranging from 0.89 to
1.32(avg. 0.97) (Fig. 4), showing obvious negative Eu anomaly characteristics (Fig. 5).

Discussion
Provenance analyses
Paleoweathering and sedimentary recycling

The geochemical features of clastic rocks are strongly influenced by the existence and degree of chemical weathering and sedimentary recycling (Nesbitt and
Young 1982; Krzeszowska 2019; Bokanda et al. 2021; Omietimi et al. 2022), thus a variety of different weathering conditions can be used to evaluate chemical
weathering history of the source area (Nesbitt and Young 1982; McLennan et al. 1993; Fedo et al. 1995; Lewin et al. 2018). CIA values can be calculated by the
formula [Al,04/(Al,05 + CaO* + Na,0 + K,0)] * 100 (molar proportion; Nesbitt and Young 1982), and the CaO* contents were calculated based on the method
described by McLennan et al. (1993). Generally, intense weathering in the source area may result in the increase of CIA values (80-100) in sediments, whereas
weak weathering may cause the sediments to have relatively low CIA values (50-70) (Yan et al. 2010; Fig. 6).

The CIA values for all collected mudstones (46.0-68.9, avg. 59.1) are lower than those of the PAAS (70.36), which indicate weak chemical weathering in the
source areas (Table 1, Fig. 6). The A-CN-K ternary plot is widely applied to evaluate the degree of weathering in the source areas as well (molar proportion;
Fedo et al. 1995). On the A-CN-K plot, all collected mudstone samples are plotted near to the plagioclase—K-feldspar join line and clustered between
granodiorite and granite average compositions (Fig. 6). In addition, the linear weathering trend of these mudstones on the A-CN-K plot reflects that the
source areas were stable (Fig. 6). These results indicate that the source areas of the collected mudstones were affected by a weak chemical weathering.

The index of compositional variability (ICV= (TFe,03 + K,0 + Na,0 + Ca0 + TiO,) / Al,03) is widely used to evaluate sediment recycling and maturity (Cox et al.
1995; Awasthi 2017; Sahariah and Bhattacharyya 2019; Li et al. 2022). The high ICV value (> 1) indicate the first-cycle products in the tectonically active area,
while the low ICV value (< 0.84) suggest intense weathering and multiple sedimentary cycles (Van de Kamp and Leake 1985; Cox et al. 1995; Chen et al. 2014).
The ICV values of the Liwaxia to Naijiahe formations are between 0.85 and 13.85 (Table 1), with an average of 3.60, which is significantly greater than that of
the PAAS (0.80). These values indicate that the Liwaxia to Naijiahe formations are first-cycle and compositionally immature. The Th/Sc and Zr/Sc ratios are
widely used to deduce the sorting degree, compositional maturity, and heavy mineral accumulation of clastic sediments (McLennan et al. 1993; Dypvik and
Harris 2001; ArmstrongAltrin et al. 2012; Wang et al. 2018). The Th/Sc and Zr/Sc ratios of all collected samples are 0.45-1.26 and 5.18-13.80, respectively.
These data combined with Th/Sc—Zr/Sc diagram indicate that the LPS mudstones were little affected by sedimentary recycling (Fig. 7).

Type of source rocks

The detrital components and elemental composition of clastic rocks are controlled by its provenance (Verma and Armstrong-Altrin 2013; Xie et al. 2018; Li et
al. 2022). Some trace elements (e.g., La, Zr, Th, Sc, Hf, Co) are non-migrating and provide a reliable indication of provenance (Li et al. 2022). In the provenance
discrimination diagrams of these trace elements (Zr/Sc versus Th/Sc, Hf versus La/Th, and La/Sc versus Co/Th), most samples fall into the field of felsic
rocks (Fig. 7). The mixed felsic/basic source was suggested in the Hf versus La/Th diagram (Fig. 7). However, the low MgO and TiO, contents indicate the
depletion of Mg and Ti, and less mafic minerals, further excluded an abundant basic provenance (McCann 1991; Tao et al. 2016; Zhang et al. 2020; Li et al.
2022). The Al,04/TiO, ratio is sensitive to the change of parent rocks: high ratios (19-28) indicate a felsic parent rock and low ratios (< 14) indicate mafic
parent rocks (Table 1, Girty et al. 1996). As illustrated on Al,05 versus TiO, diagram, the Al,03/TiO, ratios (22.84-33.44) of all samples show a felsic rocks
feature (Fig. 7). The TiO,/Zr ratios increase obviously from felsic to mafic source, thus the TiO, versus Zr diagram can distinguish mafic, intermediate, and
felsic rocks (Hayashi et al. 1997; Armstrong-Altrin et al. 2015a, b; Moradi et al. 2016; Wang et al. 2017c;Wang et al. 2018). This diagram suggests that the
collected samples originated from felsic and intermediate rocks (Fig. 7). An acidic rocks source was also suggested by TiO, versus Ni diagram (Fig. 7). In
addition, the REE's features can be used to infer the source of fine-grained sedimentary rocks: felsic source commonly displays higher LREE/HREE ratios and
negative Eu anomalies, whereas mafic source demonstrates low LREE/HREE ratios and no pronounced Eu anomalies (Taylor and McLennan 1985; Roddaz et
al. 2006; Kasanzu et al 2008). All samples show the characteristics of LREE enrichment and HREE depletion with obvious negative Eu anomalies, further
denoting a felsic provenance (Fig. 5). Abundant intermediate-acidic rocks exposed in eastern Qilian and western Qinling areas (southwestern to the study
area), which has been confirmed to be the provenance of the Sangiao-Heshangpu formations of the Liupanshan Basin (Zhao et al. 2020). In addition, the
detrital zircon ages distributions of Liwaxia and Madongshan formations are consistent with the those of the eastern Qilian and western Qinling orogens
(Ning 2017). Hence, the provenance of the Liwaxia-Naijiahe Formations is generally inherited from the Sangiao-Heshangpu period.

Based on the analysis above, it can be concluded that the provenance of the sediments of the Liwaxia-Naijiahe formations were mainly felsic acidic rocks of
the eastern Qilian and western Qinling areas.
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Paleoenvironment conditions
Paleoclimate condition

The Sr/Cu ratio is an important indicator to reveal the paleoclimate conditions: low Sr/Cu ratios (< 5.0) suggest a humid climate condition, and high Sr/Cu
ratios (>5.0) indicate an arid climate condition(Wang et al. 2017;Yu et al. 2021; Lerman 1989; Meng et al. 2012; Cao et al. 2015). The Sr/Cu ratios of the
Liwaxia to Naijiahe formations are mostly > 5.0 (1.91-47.36, avg., 12.44; 7.62-33.84, avg. 23.58; and 1.71-284.52, avg. 76.02 respectively) (Fig. 8), indicating
a semiarid-arid climate condition. The Sr/Cu values of some samples (e.g., NX-20-41 NX-20-43) of the Naijiahe formation are extremely high, with extremely
high Sr and Ba contents, which probably indicate extreme arid and evaporative environments (e.g., Dai et al. 2021). The Sr/Ba ratio is not only used for
reconstruction of the paleosalinity, but paleoclimate conditions as well (Wang et al. 2018). Generally, high Sr/Ba ratios (> 1.0) indicate an arid climate
conditions and low Sr/Ba ratios (< 0.50) reflect a humid climate condition (Meng et al. 2012; Fu et al. 2016; Wang et al. 2018). The high Sr/Ba ratio of the
Liwaxia to Naijiahe formations (0.12-3.15, avg. 0.74; 0.80-3.22, avg. 2.16, and 0.31-15.13, avg. 4.71) suggest a general arid climate conditions as well. The
Rb/Sr ratio also an important indicator to reveal the paleoclimate conditions due to different geochemical properties (Chen et al. 2022). The low Rb/Sr ratios
suggest an arid climate condition, and high Rb/Sr ratios indicate a humid climate condition (Zheng et al. 2015; Ma et al. 2019; Chen et al. 2022). The low
Rb/Sr ratio of the Liwaxia to Naijiahe formations (0.07-1.75, avg. 1.06; 0.10-0.45, avg. 0.22, and 0.01-1.32, avg. 0.22) also suggest an arid climate condition
(Fig. 8). The carbon isotope values of the Pseudofrenelopsis leaf collected from the Naijiahe Formation also indicate an arid or semi-arid climate during the
late Albian (Du et al. 2018). In addition, the discovery of Pseudofrenelopsis and Caddisfly (Du et al. 2014; He et al. 2014), the dominant Classopollis (Li and Du
2006; Zhang et al. 2012), high pCO, estimates (Du et al. 2014), occurrence of gypsum layers and evidence of the carbon and oxygen isotopes (Li et al. 2013;
Du et al. 2014) also support an arid climate condition during the late Early Cretaceous.

Paleoredox condition

Trace element ratios such as V/Cr, V/Ni, and V/Ni+V are considered to be credible redox indicators (Tonger et al. 2004; Liu et al. 2007; Li et al. 2020). Scheffler
(2006) demonstrated that V/Cr ratio < 2 indicate an oxic condition, 2-4.25 reflect a dysoxic condition, and >4.25 reveal an anoxic environment. V/Ni ratios will
increase under reducing environments (> 1) and decrease under oxic conditions (< 1) (Tan et al. 2013). V/(V + Ni) ratios less than 0.45 indicate oxic conditions,
and >0.50 indicate anoxic (Liu et al. 2007). The low V/Cr ratios of the collected mudstone samples (0.48-2.15) fluctuate somewhat around the reference
material, but all are in the oxic field except one (Fig. 8). The V/Ni ratios of all samples are greater than 1 with an average value of 2.87, indicating a reductive
deposition (Fig. 8). The V/(V + Ni) ratios of all samples, ranging 0.57 to 0.83, plot into the anoxic (Fig. 8), and indicate moderate water stratification (Peng et al.
2012; Zheng et al. 2015).

The rare element U in water is oxidized to soluble U®* under an oxidizing condition and results in the loss of U, while Th is generally present as insoluble Th**
and stable under redox conditions (Morford et al. 2009). Thus, the U/Th ratio and 8U value (6U = 2U/(U + Th/3)) are widely used to reconstruct the paleoredox
condition. And U/Th ratios < 0.27 indicate an oxic condition, 0.27-0.50 reflect a dysoxic condition, and >0.50 reveal an anoxic environment (Wignall and
Twitchett 1966). The 6U value < 1 indicate an oxic condition, and > 1 reveal an anoxic condition (Tonger et al. 2004; Wang et al. 2017). The U/Th ratios of the
Liwaxia to Naijiahe formations are mostly >0.27 (0.13-3.55, avg., 0.90; 0.77-1.99, avg. 1.50; and 0.31-2.24, avg. 0.92, respectively), indicating a dysoxic-
anoxic condition (Fig. 8). This conclusion is also supported by high 8U value (mostly > 1) (Fig. 8).

Paleosalinity

Paleosalinity is a significant indicator that is used to reflect the sedimentary environment of the water column in the geologic history (Cheng et al. 2021). The
value of 700Mg0/Al,04 can be used as an indicator for the paleosalinity (Zhang 1988; Lin et al. 2020; Stanistreet et al. 2020; Li et al. 2022). The
100MgO/Al,04 values of all samples ranging 15.45-861.64, suggest a high salinity condition. Generally, Sr is derived from a saline water column, whereas Ba
is accumulated on the fine-grained clastic sediments (Wang et al. 2018, and reference therein). Sr/Ba ratio therefore is extensively used for reconstruction of
the paleosalinity, and high Sr/Ba ratios (> 1.0) and low ratios (< 0.50) indicate a high-salinity or low-salinity column water, respectively (Meng et al. 2012; Fu et
al. 2016; Wang et al. 2017). The relative lower Sr/Ba ratio of the Liwaxia formation (0.12-3.15, avg. 0.74) suggest a low-moderate salinity condition (Fig. 8). In
contrast, the high Sr/Ba ratio of the Madongshan and Naijiahe formations (0.80-3.22, avg. 2.16, and 0.31-15.13, avg. 4.71), indicating a high-salinity
condition. Upwards through the stratigraphy, the values gradually increase from the Liwaxia to Naijiahe formation, which record the highest paleosalinity
values. Thus, this feature depicts the transition from freshwater to brackish water. The high salinity of the Madongshan and Naijiahe formations is also
supported by appearance of gypsum crystals. In addition, the discovery of Oncolites, Caddisfly cases in the Madongshan-Naijiahe Formation further confirms
high-salinity condition during this period (Zhong et al. 2010; He et al. 2014). Water salinity is closely related to paleoclimate: hot and arid climates commonly
have high evaporation rates, resulting in high salinity, whereas warm and humid climates have lower evaporation rates, resulting in lower salinity (Wei et al.
2021). The discriminant parameters of paleoclimate and paleo-salinity show a similar trend (Fig. 8), indicating that the paleoclimate play a significant role in
the Liupanshan basin's salinity fluctuation.

Reconstruction of the paleoclimate evolution model of the Liupanshan Basin and its
implications

Based on the above geochemical analyses, combined with previous lithology, sedimentary, paleontology, and carbon burial characteristics of the Liwaxia-
Naijiahe formations, the paleoclimate evolution model of the Liwaxia-Naijiahe period in the Liupanshan Basin was established (Fig. 9), so as to further
discuss the impact of regional paleoclimatic changes on the paleontological and sedimentary evolution in the northern China during the Early Cretaceous.

During the Liwaxia period, the grain size of sediments became finer obviously than early stage, featured by predominant purple-red and gray-green sand-
mudstone. The oil shale deposits developed, suggesting that the paleowater depth has obviously increased compared with the early stage. The variable colors
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of fine-grain sediments imply climatic fluctuation during this period. Previous studies also proposed different views of paleoenvironment, such as high salinity
and arid (Zhong et al. 2014), or freshwater and warm environment (Jin et al. 2006; Cai 2021). Based on investigated samples, we prefer a semiarid-arid,
anoxic, and low-moderate salinity condition during the Liwaxia period (Fig. 9). The different interpretation of paleoenvironment may be related to the climatic
fluctuation, which is resulted by some geologically abrupt event. For instance, the mass mortality of Lycoptera during the Liwaxia period, was caused by a
rapid redox change of the water body and toxicity of H,S, which were interpreted as the results of eruption of LIPs and ocean anoxic events (Liang et al. 2022).

During the Madongshan-Naijiahe period, the Liupanshan basin was under an arid, anoxic, and high salinity condition (Fig. 9). The abundant Cypridea-
Mongolocypris-Liupanshannia, Lycopera-Huashia, and Kuntulunia- Tongxinichthys in the Madongshan formation appeared, and dominating oil shale deposits
developed, suggesting that the paleowater depth has further increased and reached the highest (Fig. 9). Semi-deep lake/deep lake facies deposits are mainly
developed in the whole region (Zhao et al. 2020). In addition, the Madongshan period was the main stage of organic carbon burial in the Liupanshan basin.
The grey-black oil shale deposits are developed in the stratum, and the TOC abundance reached its highest value (Cai 2021). The sporopollen (e.g.,
Schizaeoisporites, Ephedripites, and Jugella) and fossil plant taxa, and the leafy shoot morphological and epidermal structures of the present
Pseudofrenelopsis in the Naijiahe formation indicate an arid climate as well (Du et al. 2014). The increasing of gypsum sequestration in the Naijiahe Fm.
supports a gradual enhancement of salinization (Fig. 9). However, the lake level declined in the Naijiahe period, indicated by sedimentary characteristics (Qu et
al. 2003), which is probably caused by extremely dry with high evaporation condition or regional uplift.

The Cretaceous is known to be a time of “hothouse climate” (Wang and Hu 2005; Zhang et al. 2020). In this study, a process of gradual drought and
increasing salinity is suggested in the Liupanshan basin. Especially, the arid and anoxic climate conditions during the Madongshan-Naijiahe period probably
have a close relationship with the global “hothouse climate” (Fig. 10). On a large scale, the Lower Cretaceous strata are widely distributed in northern China
(Cao 2013; Xi et al. 2019), and most Early Cretaceous terrestrial basins display similar sedimentary features and basin evolution (Fig. 10). These basins were
mainly filled under the rift basins system and featured by lacustrine sedimentary environments in the Aptian and deposited rich organic shale or coal,
indicating a climate favorable for hydrocarbon generation. From NE to NW China, it displays a trend of intensified aridity. Although the development of coal in
the NE China indicates a humid climate, the climatic fluctuation also led to the weakening or stopping of coal accumulation (Wang 2018). The enrichment of
organic matter in the lake water, featured by the development of black shales, is considered caused by hot and dry continental paleoclimate and lake water
salinity under the hothouse climate during the OAE 1 period (Zhang et al. 2021). The geochemical and organic carbon isotope analysis of the lacustrine
sedimentary strata in the norther China basins, e.g., Liupanshan, Jiuguan, Liaoning, Jiaolai basins, revealed a good compatibility with the marine sedimentary
strata during OAE 1 (Fig. 10) (Yang et al. 2007; Dai et al. 2012; Li et al. 2013; Suarez et al. 2013; Zhang et al. 2016; Zhang et al. 2021b). These evidences
further support the hypothesis that OAE 1 has extensive responses in terrestrial basins in northern China. In addition, the gypsum deposits from Naijiahe
formation (K;n) of Liupanshan Basin, Zhonggou Formation (K;z) of Jiuquan Basin, and Lianmugin formation (K;I) of the Junggar and Tuha basins (Cao
2010) are reliable evidence for this regional strong evaporation climate event. A semiarid climate interrupted by arid evaporation alternations was interpreted
for the salinization in some lakes in NW China during the Early Cretaceous (Li et al. 2013; Zhang et al. 2021). The high contents of Classopollis were also
observed in Lanzhou-Hekou, Yin'e, and Liupanshan basins (Zhang 2011), indicating that a hot, dry, and high-evaporation climate dominated the NW China
during the middle-late Early Cretaceous. Therefore, the hothouse climate played a significant role in the development of terrestrial sediments (especially
lacustrine hydrocarbon source rocks) during the late Early Cretaceous in northern China. This strengthens understanding of the paleoclimatic patterns of
terrestrial lacustrine system in northern China under the background of a greenhouse climate. Also noteworthy is that the hothouse climate pattern was not
stable and it was frequently interrupted by short-term cooling events, which has been confirmed by a large number of studies, such as, carbon-oxygen isotope
values (Li et al. 2013; Zhang et al. 2021).

Conclusion

(1) Geochemical indicators revealed a weak weathering and negligible sedimentary recycling. The provenance of the Liwaxia-Naijiahe formations were mainly
felsic acidic rocks of the eastern Qilian and western Qinling areas.

(2) A series of paleoclimate proxies (such as Th/U, Rb/Sr, etc.) reveal that Liwaxia-Naijiahe formations were deposited in a semiarid- arid and anoxic
paleoclimate, and the degree of aridity and paleosalinity increases from the Liwaxia to the Naijiahe period.

(3) The extensive paleoclimatic and paleosalinity changes, and organic matter enrichment recorded in northern China were caused by the regional semiarid-
arid paleoclimate in the late Early Cretaceous, which was related to ocean anoxic event 1 (OAE 1) under the global hothouse climate.
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Figure 1
(a) Paleogeographic map of Albian stage (~106 Ma) of Early Cretaceous and the location of Liupanshan Basin. Map data from Scotese (2014), current data

according to Scotese (2002) (b) Division of structural units in the Liupanshan Basin (modified from Cai, 2021). (c) Synthetical lithostratigraphic column of the
Lower Cretaceous of the Liupanshan Basin (Zhao et al, 2020).
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Figure 2

Geological map of the Ningnan region (modified from Zhao et al, 2020).
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Figure 3

Lithostratigraphic column and outcrop photographs of the Huoshizhai section in the Liupanshan Basin. (a)-(b) Sangiao Fm., (c)-(d) Heshangpu Fm., (e)-(f)
Liwaxia Fm., (g)-(h) Madongshan Fm.,, (i)-(j) Naijiahe Fm.
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Figure 4

The geochemical profile of the Liwaxia-Naijiahe Formation in the Huoshizhai Section.
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Figure 5

(a) Chondrite-normalized REE patterns of the Lower Cretaceous mudstones from the Liupanshan Basin; (b) Chondrites-normalized multi-element diagrams for
trace elements in the Lower Cretaceous mudstones from the Liupanshan Basin. Chondrite values are from Taylor and McLennan (1985).
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Figure 6

Al,03-(Ca0* + Na,0)-K,0 ternary diagram to infer the degree of weathering (in molar proportion).
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Figure 7

Bivariate plots for the Lower Cretaceous mudstones from the Liupanshan Basin. (a) TiO, vs. Al,Og; (b) TiO, vs. Zr; (c) La/Th—Hf; (d) Co/Th-La/Sc; (e) TiO,
vs. Ni; and (f) Th/Sc vs. Zr/Sc.
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Figure 8

The indicators of paleosalinity, paleoredox, and paleoclimate conditions for the Lower Cretaceous mudstones from the Liupanshan Basin.
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Figure 9

The sedimentary evolution model of the Liupanshan Basin during the Liwaxia-Naijiahe period.
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Figure 10
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Relationship of sea level changes with early Cretaceous continental paleoclimate and sedimentary environment in northern China. Stratigraphic data of
northern China from Cao (2018) and Xi et al. (2019), and relative eustatic change data after Sahagian et al. (1996).
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