

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Phyllosticta taxa from northern Thailand and southern European Russia: a novel species and four new host records

Deecksha Gomdola (deeckshagomdola@gmail.com)

Mae Fah Luang University School of Science https://orcid.org/0000-0002-0817-1555

Ruvishika Shehali Jayawardena

Mae Fah Luang University

Eric H.C. McKenzie

Manaaki Whenua: Landcare Research New Zealand

Timur S. Bulgakov

FSBIS Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences: FGBUN Federal'nyj issledovatel'skij centr Subtropiceskij naucnyj centr Rossijskoj akademii nauk

Dhanushka N. Wanasinghe

Kunming Institute of Botany Chinese Academy of Sciences

Naruemon Huanraluek

Mae Fah Luang University

Kevin David Hyde

Mae Fah Luang University School of Science

Research Article

Keywords: Dothideomycetes, host reports, multi-locus phylogenetic analyses, one new taxon, Phyllostictaceae, taxonomy

Posted Date: March 21st, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2645518/v1

License: 🐵 🛈 This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Abstract

Phyllosticta is a cosmopolitan group of fungi found on various host plants, occurring as pathogens, endophytes and saprobes. Diseases caused by *Phyllosticta* commonly include leaf and fruit spots that affect economically important plants. The genus is characterized mainly by aseptate and hyaline conidia and ascospores. However, its conidia are surrounded by a mucilaginous sheath, with a single mucoid apical appendage while ascospores exhibit a mucoid cap at both ends. Given that many *Phyllosticta* taxa are cryptic and share similar morphological features, it is arduous to depict taxonomically relevant characters solely on the basis of morphological and ecological features. Coupled with morphological description, multi-locus phylogenetic analyses of species comprising complexes are used to broadly describe this genus and understand species boundaries. Despite several published taxonomic revisions and enumerations of *Phyllosticta* species, there is still considerable confusion when identifying these taxa. Herein, we introduce a new species (*P. capitalensis*) in Thailand, and one new host and country record (*P. citribrasiliensis*) in Russia. We provide an updated phylogenetic tree, including all *Phyllosticta* species with sequence data.

Introduction

Phyllosticta taxa manifest primarily as phytopathogens (Wikee et al. 2013a; Hyde et al. 2014; Jayawardena et al. 2019). They cause diseases such as leaf spots, leaf blights and blotch, tan and black spots of fruits, fruit lesions and freckle disease in numerous plants (Glienke-Blanco et al. 2002; Aa and Vanev 2002; Wulandari et al. 2009; Wong et al. 2012; Wikee et al. 2013a; Zhou et al. 2015; Jayawardena et al. 2019; Anderson et al. 2021). These phytopathogens infect economically important crops and ornamentals globally. For example, *P. vaccinii* causes early rot of cranberries in Wisconsin, United States (McManus 1998). *Phyllosticta citriasiana* is a destructive pathogen that causes necrotic spots of *Citrus maxima* in Asia (Wulandari et al. 2009). *Phyllosticta ophiopogonis* causes leaf spots of *Ophiopogon japonicus*, an important ornamental plant in Thailand (Wikee et al. 2012). *Phyllosticta ampelicida* causes black rot disease of *Vitis vinifera* in North America (Kuo and Hoch 2018). Certain pathogens are considered to cause emerging diseases, impacting largely on the ecosystem and economy (Gomdola et al. 2022). Such an example is *P. citricarpa*, which causes citrus black spots (Kotzé 1981; Baldassari et al. 2008). *Phyllosticta citricarpa* is considered as a quarantine pest in Europe and the USA, thereby jeopardizing international trade (Baayen et al. 2002; Dewdney et al. 2011; Glienke et al. 2011; Gabriela et al. 2014; EPPO 2023). Pathogenic *Phyllosticta* taxa impair host plants by reducing their photosynthetic potential and increasing leaf or fruit fall (Glienke-Blanco et al. 2002; Baldassari et al. 2008).

Phyllosticta species also exist as endophytes (Baayen et al. 2002; Okane et al. 2003; Wulandari et al. 2010; Wikee et al. 2013b; Asiandu et al. 2021), as well as saprobes (van der Aa and Vanev 2002; Glienke et al. 2011). One of the most common endophytes, *P. capitalensis*, has a ubiquitous distribution on a myriad of hosts (Wikee et al. 2013b). *Phyllosticta capitalensis* is also a weak phytopathogen causing leaf spots (Wikee et al. 2013b), suggesting that some species can switch lifestyles depending on the environment and hosts that they colonize. Endophytic *P. capitalensis* also possesses potential antagonistic effects against pathogenic *P. citricarpa* on citrus (Tran et al. 2019). Some *Phyllosticta* species generate appressoria prior to entering their hosts, for example *P. maculata* (Wong et al. 2013). *Phyllosticta* species mainly produce melanized appressoria (Sutton 1980; Chethana et al. 2021a, b).

Phyllosticta (Phyllostictaceae, Botryosphaeriales, Dothideomycetes) was established by Persoon (Persoon 1818; Wijayawardene et al. 2022a). The genus has been accommodated in different families, listed chronologically in Table 1. *Phyllosticta convallariae* was designated as the type species (Donk 1968), which was later synonymized to *P. cruenta* (van der Aa 1973; Wikee et al. 2013a). *Phyllosticta* species occur both in the sexual and asexual morphs. *Guignardia*, the sexual morph of *Phyllosticta*, was introduced by Viala and Ravaz (1892). According to current fungal nomenclature rules that employ one name for one fungus (Hawksworth et al. 2011; Wingfield et al. 2011), the use of *Phyllosticta* is recommended, given that it is the earlier and a more commonly used name than *Guignardia* (Glienke et al. 2011; Wikee et al. 2013a; Wijayawardene et al. 2022a).

The sexual morph of *Phyllosticta* species are characterized by erumpent, uniloculate, globose to subglobose ascomata with a central ostiole, displaying pseudoparaphyses at maturity. Asci are usually clavate to broadly ellipsoidal or narrowly ovoid, pedicellate, with an ocular chamber. Ascospores are aseptate, hyaline, ellipsoidal to limoniform, guttulate, and smooth-walled, with a mucoid cap at both ends (van der Aa 1973; Wong et al. 2012; Wikee et al. 2013a). Conidia of *Phyllosticta* are generally aseptate, hyaline, ovoid to ellipsoidal, globose to sub-globose, surrounded by a mucilaginous sheath, bearing an apical appendage (van der Aa 1973; Wikee et al. 2011). However, the sheath and appendages are not present in all species e.g., *P. minima* and *P. sphaeropsoidea* lack a sheath and appendage (Wikee et al. 2013a). Conidial appendages that form on agar cultures may be lost upon maturation, or fluctuate in shape and size when grown in different media (Wikee et al. 2013a). Furthermore, spermatia produced in culture are hyaline, aseptate, cylindrical to dumbbell-shaped with guttules at each end (van der aa 1973). The overlapping morphological features of *Phyllosticta* make it difficult to delineate between species but multi-locus phylogenetic analyses can facilitate species delimitation (Norphanphoun et al. 2020).

Because fungi are integral components of biodiversity, it is important to report novel and existing species from different hosts. Herein, based on the combination of morphological description and multigene phylogenetic analyses, we establish a novel taxon (*P. chiangmaiensis*) from *Musa* sp. and provide three new host records (*P. capitalensis*) from *Phyllanthus emblica*, *Morus alba*, and *Ficus auriculata* in Thailand, and one new host and country record (*P. citribrasiliensis*) from *Laburnum anagyroides* in Russia. We provide an updated phylogenetic tree, including all *Phyllosticta* species with sequence data.

	Table	1
Family	history of	Phyllosticta

Events	References
<i>Phyllostictaceae</i> (as Phyllostictei) was initially proposed by Fries and accepted by Hawksworth & David.	Fries (1849); Hawksworth (1989)
Phyllosticta was accommodated in Phyllostictaceae (Phyllostictales).	Seaver (1922)
Placement of Phyllosticta in Botryosphaeriaceae Theiss. & Syd. (Botryosphaeriales)	Crous et al. (2006); Schoch et al. (2006); Liu et al. (2012)
Phyllosticta was re-accommodated in Phyllostictaceae (Botryosphaeriales).	Wikee et al. (2013a)

Materials And Methods

Sample collection, isolation and morphology

Dead leaf and fruit specimens, some having leaf and fruit spots, were collected from northern Thailand and brought to the laboratory in paper bags. Other living leaf specimens with leaf spots were collected from southern European Russia and dried in paper bags. Following surface sterilization with 70% ethanol to avoid secondary contaminants, the specimens were incubated in moist plastic boxes at room temperature for 3 days. Following methods outlined by Senanayake et al. (2020), single spore isolation was performed for MFLU22-0175 and MFLU22-0176, but the latter did not germinate despite the use of different media and different incubation temperatures. Tissue isolation was performed for MFLU22-0177, MFLU22-0178 and MFLU22-0179. For tissue isolation, sections including part of the leaf spots and healthy tissue were cut and surface sterilized in 70% ethanol for one minute, followed with 5% sodium hypochlorite for one minute. These leaf sections were rinsed thrice with sterilized water, dried on sterilized tissue paper, and placed on potato dextrose agar (PDA) plates, incubated at 25°C for one to two days. Growing hyphal tips were transferred aseptically to fresh PDA plates containing antibiotics (Amoxicillin, MacroPhar). Resulting pure isolates were incubated for two to three weeks at 25°C.

For MFLU22-0175 and MFLU22-0176, morphological characters were observed from the leaf specimens while living cultures were observed for MFLU22-0177, MFLU22-0178 and MFLU22-0179. Structures that were examined include conidiomata, pycnidial wall and conidia, as well as their attachment. These observations were made using a Motic SMZ 168 Series stereo-microscope. Digital images of micro morphological features were captured with a Cannon 750D camera (Canon, Tokyo, Japan) attached to a Nikon ECLIPSE E600 compound microscope (Nikon, Tokyo, Japan). The photo-plate was prepared using Adobe Photoshop CS6 version (Adobe Systems, USA). The micro morphological features were measured using Tarosoft® Image Frame Work software (version 0.97) by using different calibration settings under different magnification.

Material deposition and reference numbers

Living cultures were deposited in Mae Fah Luang University Culture Collection (MFLUCC). Dry leaf specimens and dry cultures, including a holotype of the newly described taxon, were deposited in Mae Fah Luang University herbarium (MFLU). FacesofFungi (https://www.facesoffungi.org/), and Index Fungorum (http://www.indexfungorum.org/Names/Names.asp) numbers are provided (Index Fungorum 2023; Jayasiri et al. 2015). Species descriptions have been updated in the GMS microfungi database (https://gmsmicrofungi.org/) (Chaiwan et al. 2021).

DNA extraction, PCR amplification, and sequencing

For MFLU22-0175 and MFLU22-0176, DNA was extracted directly from conidiomata while fresh mycelium scraped from the margin of colonies on PDA were used for DNA extraction of MFLU22-0177, MFLU22-0178 and MFLU22-0179. For direct DNA extraction, approximately 30 conidiomata were picked from the sterilized substrates by using a sterile needle. This was carried out using a Motic SMZ 168 Series stereo-microscope. The conidiomata were collected in a 1.5 ml micro-centrifuge tube. Genomic DNA was extracted using the Forensic DNA Kit (D3396-01, OMEGA bio-tek), following the manufacturer's protocol. The loci ITS, LSU, *ACT, TEF-1a, GAPDH*, and *RPB2* were amplified using primers listed (Table 2). PCR conditions for each gene region are provided (Fig. 1). The polymerase chain reaction (PCR) mixture (25 µL) comprised 12.5 µL of master mix (PROMEGA GoTaq®, Green), 1.5 µL of genomic DNA, 1 µL of forward and reverse primer each, and 9 µL of double-distilled H₂O. The amplification procedure was performed in an Applied Biosystems C1000 TouchTM Thermal Cycler. The PCR products were verified DNA fluorescent loading dye (FluoroDye, SMOBIO) on 1.7% agarose electrophoresis gels. The latter were purified following the company protocols. DNA was sequenced at Biogenomed Co. Ltd. (Bangkok, Thailand). Forward and reverse DNA sequence data were obtained from the sequencing company and consensus sequences were produced using SeqMan (DNAStar, Inc., Madison, WI, USA).

Newly generated sequences were deposited in NCBI GenBank database (https://submit.ncbi.nlm.nih.gov/) and accession numbers for each isolate are provided (Table 3).

	Table 2 Primers used	
Gene region	Primer pairs	References
Internal transcribed spacer (ITS)	ITS1/ ITS4	White et al. (1990)
Large subunit (LSU)	LROR/ LR5	White et al. (1990)
Actin (ACT)	Act512F/ Act738R	Carbone and Kohn (1999)
Translation elongation factor 1α (<i>TEF-1a</i>)	EF1-728F/EF2	O'Donnell et al. (1998); Carbone and Kohn (1999)
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)	Gpd1-LM/Gpd2-LM	Myllys et al. (2002)
RNA polymerase 2 (<i>RPB2</i>)	RPB2-5F2/RPB2-7CR	Liu et al. (1999); Sung et al. (2007)

Phylogenetic analyses

Newly generated sequences were subjected to BLAST search in NCBI (https://blast.ncbi.nlm.nih.gov/) (Nilsson et al. 2014; Dissanayake et al. 2020). Based on latest data, ITS, LSU, *ACT, TEF-1a, GAPDH*, and *RPB2* sequences from type and non-type strains were retrieved from GenBank (https://www.ncbi.nlm.nih.gov/) (Table 3). Sequences of individual gene regions were aligned using the online platform, MAFFT v.7 (https://mafft.cbrc.jp/alignment/server/) (Katoh et al. 2019), and trimmed using trimAl to remove uneven ends (Capella-Gutiérrez et al. 2009). Gaps were treated as missing data. Single genes were concatenated using BioEdit v. 7.0.5.2 (Hall 1999). Both single and multi-locus datasets were analyzed. Phylogenetic trees were constructed using maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) method.

Maximum likelihood analysis was performed in the CIPRES Science Gateway v.3.3 (Miller et al. 2010). RAXML-HPC v.8 on XSEDE with 1,000 bootstrap iterations were performed (Stamatakis 2014). Maximum parsimony analysis was performed by using Phylogenetic Analysis Using Parsimony (PAUP) v.4.0b10 (Swoford 2002) to obtain the most parsimonious tree. Trees were inferred using the heuristic search option with 1,000 random sequence additions. Maxtrees were setup to 5000 with 1000 bootstrap replicates. Descriptive tree statistics for parsimony (tree length [TL], consistency index [CI], retention index [RI], relative consistency index [RC] and homoplasy index [HI] were calculated for trees generated under different optimality criteria.

Prior to BI analysis, the model of evolution was estimated by using MrModeltest 2.2 under the Akaike information criterion (AIC) implemented in PAUP v.4.0b10. Partitioning of data was carried out for individual gene regions (Table 4) (Nylander 2004). Bayesian inference analysis was executed in the CIPRES Science Gateway v.3.3 by running MrBayes on XSEDE v.3.2.7a (Huelsenbeck et al. 2001; Ronquist and Huelsenbeck 2003). Posterior probabilities (PP) were obtained through Markov chain Monte Carlo (MCMC) sampling. Four Markov chains were run simultaneously for 30,000,000 generations, with trees sampled every 100th generation, so that the average standard deviation of split frequencies at the end of the total MCMC generations converged to 0.01 or less. The first 20% of the sampled trees were discarded as 'burn in' and the remaining 80% was used to calculate PP of the majority rule consensus tree.

Phylograms were visualized using FigTree v.1.4.4 (Rambaut and Drummond 2014). Microsoft PowerPoint (2016) was used to edit the resulting phylogenetic trees. Bootstrap support values equal or greater than 70% are given for ML and MP. Posterior probability (PP) values equal or greater than 0.80 are given for Bl. In this study, we consider bootstrap values equal or greater than 80% and PP values equal or greater than 0.95 as strong support.

Genealogical Concordance Phylogenetic Species Recognition Analysis (GCPSR)

Genealogical concordance phylogenetic species recognition (GCPSR) model as described by Taylor et al. (2000) was applied to scrutinize any significant recombination event that occurred between phylogenetically related species. The recombination extent of the newly described taxon, *P. chiangmaiensis* (MFLU22-0176) was compared with the type strain of the phylogenetically closely related taxa, *P. maculata* (CPC 18347), *P. musaechinensis* (GZAAS 6.1247) and *P. musarum* (BRIP 55434). This was determined by a pairwise homoplasy index (Φw) test (PHI), performed in SplitsTree4 (www.splitstree.org) (Bruen et al. 2006; Huson et al. 2014). The resulting splits graphs were constructed using both LogDet transformation and splits decomposition options (Fig. 2).

Table 3

Species	Strain no.	GenBank acc	ession number	S				Hosts	Count
		ITS	LSU	TEF-1a	ACT	GAPDH	RPB2		
Phyllosticta abieticola	CBS 112067	KF170306	EU754193	-	KF289238	-	-	Abies concolor	Canad
P. acaciigena	CPC 28295	KY173433	KY173523	-	KY173570	-	-	Acacia suaveolens	Austra
P. aloeicola	CPC 21020	KF154280	KF206214	KF289193	KF289311	KF289124	KY855816	Aloe ferox	South
P. aloeicola	CPC 21021	KF154281	KF206213	KF289194	KF289312	KF289125	KY855817	Aloe ferox	South
P. alpina	GZCC 6.1702	MH380033	-	MH380029	MH380027	MH380031	-	Cephalotaxus fortunei	China
P. alpina	GZCC 6.1703	MH380034		MH380030	MH380028	MH380032	-	Cephalotaxus fortunei	China
P. ampelicida	ATCC 200578	KC193586	-	-	KC193581	KC193584	-	Vitis riparia	USA
P. ardisiae	MUCC0045	AB454283	-	-	-	-	-	Ardisia japonica	Japar
P. ardisiicola	NBRC 102261	AB454274	-	-	AB704216	-	-	Ardisia crenata	Japar
P. aristolochiicola	BRIP 53316	JX486129	-	-	-	-	-	Aristolochia acuminata	Austra
P. aspidistricola	NBRC 102244	AB454314	-	-	AB704204	-	-	Aspidistra elatior	Japar
P. aucubae- japonicae	MAFF 236703	KR233300	-	KR233310	KR233305	-	-	Aucuba japonica	Japar
P. austroafricana	CBS 144593	MK442613	MK442549	MK442704	MK442640	-	-	Unknown tree	South
P. azevinhi	MUCC0088	AB454302	-	-	AB704226	-	-	llex pedunculosa	Japar
P. beaumarisii	CBS 535.87	NR_145235	NG_058040	KF766429	KF306232	KF289074	-	Muehlenbekia adpressa	Austra
P. bifrenariae	CBS 128855	JF343565	KF206209	JF343586	JF343649	JF343744	KY855818	Bifrenaria harrisoniae	Brazil
P. bifrenariae	CPC 17467	KF170299	KF206260	KF289207	KF289283	KF289138	KY855819	Bifrenaria harrisoniae	Brazil
P. brazilianiae	LGMF 330	JF343572	KF206217	JF343593	JF343656	JF343758	-	Mangifera indica	Brazil
P. brazilianiae	LGMF 334	JF343566	KF206215	JF343587	JF343650	JF343752	-	Mangifera indica	Brazil
P. capitalensis	CBS 128856	JF261465	KF206304	JF261507	JF343647	JF343776	KY855826	<i>Stanhopea</i> sp.	Brazi
P. capitalensis	MFLU22-0177	OP686473	OP686475	OQ189916	OQ189919	-	OQ189923	Phyllanthus emblica	Thaila
P. capitalensis	MFLU22-0178	-	-	-	-	-	OQ189924	Morus alba	Thaila
P. capitalensis	MFLU22-0179	OP688119	OP688118	-	OQ189920	-	OQ189925	Ficus auriculata	Thaila
P. capitalensis	CBS 226.77	FJ538336	KF206289	FJ538394	FJ538452	JF343718	KY855820	Paphiopedilum callosum	Germ
P. capitalensis	CBS 356.52	FJ538342	KF206300	FJ538400	FJ538458	KF289087	-	<i>llex</i> sp.	-
P. capitalensis	CBS 100175	FJ538320	KF206327	FJ538378	FJ538436	JF343699	KY855821	<i>Citrus</i> sp.	Brazi
P. capitalensis	CBS 101228	FJ538319	KF206325	FJ538377	FJ538435	KF289086	KY855822	Nephelium Iappaceum	Hawa
P. capitalensis	CBS 114751	EU167584	-	FJ538407	FJ538465	KF289088	KY855823	<i>Vaccinium</i> sp.	New Zeala
P. capitalensis	CBS 115047	FJ538323	KF206318	FJ538381	FJ538439	KF289077	-	Aspidosperma polyneuron	Brazil
P. capitalensis	CBS 115049	FJ538324	KF206317	FJ538382	FJ538440	KF289084	-	Bowdichia nitida	Brazi

Species	Strain no.	GenBank ac	cession numbe	rs				Hosts	Countr
		ITS	LSU	TEF-1a	ACT	GAPDH	RPB2		
P. capitalensis	CBS 117118	FJ538339	JQ743603	FJ538397	FJ538455	KF289090	-	Musa acuminata	Indone
P. capitalensis	CBS 123373	FJ538341	JQ743604	FJ538399	FJ538457	JF343703	KY855824	Musa paradisiaca	Thailar
P. capitalensis	CPC 11867	KF206181	KF206283	KF289184	KF289260	KF289108	-	Acacia crassicarpa	Thailar
P. capitalensis	CPC 13987	KF206183	KF206281	KF289176	KF289263	KF289083	-	Protea repens	Portug
P. capitalensis	CPC 14609	KF206184	KF206280	KF289175	KF289264	KF289081	KY855827	<i>Zyzygium</i> sp.	Republ Madag
P. capitalensis	CPC 16590	KF206185	KF206272	KF289177	KF289271	KF289091	-	Citrus limon	Argenti
P. capitalensis	CPC 16591	KF206186	KF206271	KF289179	KF289272	KF289093	-	Citrus limon	Argenti
P. capitalensis	CPC 17468	KF206188	KF206259	KF289189	KF289284	KF289120	-	Cymbidium sp.	Brazil
P. capitalensis	CPC 20251	KC291333	KF206252	KC342553	KC342530	KF289101	-	Unknown plant	Thailar
P. capitalensis	CPC 20253	KF206192	KF206250	KF289181	KF289293	KF289102	-	Schefflera venulosa	Thailar
P. capitalensis	CPC 20254	KC291335	KF206249	KC342555	KC342532	KF289103	-	Saccharum officinarum	Thailar
P. capitalensis	CPC 20255	KC291336	KF206248	KC342556	KC342533	KF289115	-	Arecaceae	Thailar
P. capitalensis	CPC 20256	KC291337	KF206247	KC342557	KC342534	KF289089	-	Ophiopogon japonicus	Thailar
P. capitalensis	CPC 20257	KC291338	KF206246	KC342558	KC342535	KF289099	-	Ficus benjamina	Thailar
P. capitalensis	CPC 20258	KC291339	KF206245	KC342559	KC342536	KF289094	-	Ophiopogon japonicus	Thailar
P. capitalensis	CPC 20259	KC291340	KF206244	KC342560	KC342537	KF289104	KY855828	Orchidaceae	Thailar
P. capitalensis	CPC 20263	KC291341	KF206241	KC342561	KC342538	KF289085	KY855829	Magnoliaceae	Thailar
P. capitalensis	CPC 20265	KF206194	KF206239	KF289182	KF289297	KF289105	-	Euphobiaceae	Thailar
P. capitalensis	CPC 20266	KC291342	KF206238	KC342562	KC342539	KF289109	-	<i>Polyscias</i> sp.	Thailar
P. capitalensis	CPC 20267	KF206195	KF206237	KF289173	KF306233	KF289078	-	Baccaurea ramiflora	Thailar
P. capitalensis	CPC 20268	KC291343	KF206236	KC342563	KC342540	KF289117	KY855830	Hibiscus syriacus	Thailar
P. capitalensis	CPC 20270	KC291345	KF206234	KC342565	KC342542	KF289110	-	Tectona grandis	Thailar
P. capitalensis	CPC 20271	KF206196	KF206233	KF289183	KF289298	KF289106	-	Crinum asiaticum	Thailar
P. capitalensis	CPC 20272	KC291346	KF206232	KC342566	KC342543	KF289079	-	Orchidaceae	Thailar
P. capitalensis	CPC 20274	KF206197	KF206231	KF289188	KF289299	KF289119	-	Mangifera indica	Thailar
P. capitalensis	CPC 20275	KC291347	KF206230	KC342567	KC342544	KF289107	KY855831	Polyalthia longifolia	Thailar
P. capitalensis	CPC 20278	KC291348	KF206227	KC342568	KC342545	KF289113	KY855832	Euphorbia milii	Thailar
P. capitalensis	CPC 20423	KC291349	KF206226	KC342569	KC342546	KF289116	-	<i>Philodendron</i> sp.	Thailar
P. capitalensis	CPC 20510	KF206200	KF206223	KF289174	KF289304	KF289080	-	Pyrrosia adnascens	Thailar
P. capitalensis	LGMF 219	KF206202	KF206220	JF261490	KF289306	JF343737	-	Citrus sinensis	Brazil
P. capitalensis	LGMF 220	KF206203	KF206219	JF261488	KF289307	JF343735	-	Citrus sinensis	Brazil
P. capitalensis	LGMF 222	KF206204	KF206218	JF261492	KF289308	JF343739	-	Citrus sinensis	Brazil
P. carissicola	CPC 25665	KT950849	KT950863	KT950879	KT950872	KT950876	-	Carissa macrocarpa	South

Species	Strain no.	GenBank acc	ession numbe		Hosts	Countr			
		ITS	LSU	TEF-1a	ACT	GAPDH	RPB2		
P. carochlae	CGMCC 3.17317	KJ847422	-	KJ847444	KJ847430	KJ847438	-	Caryota ochlandra	China
P. catimbauensis	URM 7672	MF466160	MF466163	MF466155	MF466157	-	-	Mandevilla catimbauensis	Brazil
P. catimbauensis	URM 7674	MF466161	MF466164	MF466153	MF466158	-	-	Mandevilla catimbauensis	Brazil
P. cavendishii	BRIP 55419	JQ743562	-	-	-	-	-	<i>Musa</i> sp.	Taiwa
P. cavendishii	BRIP 57384	KC117644	KU697330	KF009695	KF014059	KU716085	-	<i>Musa</i> sp.	Austra
P. cavendishii	BRIP 57383	KC117643	KU697329	KF009694	KF014058	KU716084	-	<i>Musa</i> sp.	Austra
P. cavendishii	NTP-Dc 40957	KU708538	KU697328	KU716092	KU697321	KU716083	-	<i>Musa</i> sp.	Austra
P. cavendishii	NTP-Dc 40579	KU708537	KU697327	KU716091	KU697320	KU716082	-	<i>Musa</i> sp.	Austra
P. chiangmaiensis	MFLU22-0176	OP693476	OP693472	OQ189918	OQ189922	-	-	<i>Musa</i> sp.	Thaila
P. citriasiana	CBS 120486	FJ538360	KF206314	FJ538418	FJ538476	JF343686	KY855858	Citrus maxima	Thaila
P. citriasiana	CBS 120487	FJ538361	KF206313	FJ538419	FJ538477	JF343687	KY855859	Citrus maxima	China
P. citribrasiliensis	CBS 100098	FJ538352	KF206221	FJ538410	FJ538468	JF343691	KY855861	Citrus limon	Brazil
P. citribrasiliensis	MFLU22-0175	-	OP684319	OQ189917	OQ189921	-	-	Laburnum anagyroides	Russia
P. citribrasiliensis	CPC 17466	KF170302	KF206261	KF289226	KF289282	KF289161	-	<i>Citrus</i> sp.	Brazil
P. citribrasiliensis	CPC 17465	KF170301	KF206262	KF289225	KF289281	KF289160	KY855863	<i>Citrus</i> sp.	Brazil
P. citribrasiliensis	CPC17464	KF170300	KF206263	KF289224	KF289280	KF289159	KY855862	<i>Citrus</i> sp.	Brazil
P. citribrasiliensis	LGMF09	JF261436	-	JF261478	JF343618	JF343693	-	<i>Citrus</i> sp.	Brazil
P. citribrasiliensis	LGMF08	JF261435	-	JF261477	JF343617	JF343692	-	<i>Citrus</i> sp.	Brazil
P. citricarpa	CBS 127454	JF343583	KF206306	JF343604	JF343667	JF343771	KY855866	Citrus limon	Austra
P. citricarpa	CBS 127455	JF343584	KF206305	JF343605	JF343668	JF343772	-	Citrus sinensis	Austra
P. citrichinaensis	ZJUCC 200956	JN791620	-	JN791459	JN791533	-	-	Citrus reticulata	China
P. citrimaxima	MFLUCC 10- 0137	KF170304	KF206229	KF289222	KF289300	KF289157	-	Citrus maxima	Thaila
P. concentrica	CPC 18842	KF170310	KF206256	KF289228	KF289288	KF289163	-	<i>Hedera</i> sp.	Italy
P. concentrica	CBS 937.70	-	KF206291	-	KF289257	-	-	Hedera helix	Italy
P. cordylinophila	MFLUCC 10- 0166	KF170287	KF206242	KF289172	KF289295	KF289076	KY855887	Cordyline fruticosa	Thaila
P. cordylinophila	MFLUCC 12- 0014	KF170288	KF206228	KF289171	KF289301	KF289075	KY855888	Cordyline fruticosa	Thaila
P. cornicola	CBS 111639	KF170307	-	-	KF289234	-	-	Cornus florida	USA
P. cruenta	CBS 858.71	MG934458	-	MG934501	MG934465	MG934474	-	Polygonatum odoratum	Czech Repub
P. cruenta	MUCC0206	AB454331	-	-	AB704237	-	-	Polygonatum odoratum var. pluriflorum	Japan
P. cryptomeriae	KACC 48643	MK396559	-	-	-	-	-	Juniperus chinensis var. sargentii	-
P. cryptomeriae	MUCC0028	AB454271	-	-	AB704213	-	-	Cryptomeria japonica	Japar
P. cussonia	CPC 14873	JF343578	KF206279	JF343599	JF343662	JF343764	KY855889	<i>Cussonia</i> sp.	South
P. cussonia	CPC 14875	JF343579	KF206278	JF343600	JF343663	JF343765	KY855890	<i>Cussonia</i> sp.	South
P. doitungensis	MFLUCC 21-	OK661034	OK661034	OL345581	-	-	OL345582	Dasymaschalon obtusipetalum	Thaila

Species	Strain no.	GenBank acc	cession number	s				Hosts	Count
		ITS	LSU	TEF-1a	ACT	GAPDH	RPB2		
P. domestica	MUCC0425	AB454346	-	-	AB704241	-	-	Nandina domestica	Japan
P. elongata	CBS 126.22	FJ538353	-	FJ538411	FJ538469	KF289164	-	Oxycoccus macrocarpos	USA
P. encephalarticola	CPC 35970	MN562101	MN567609	MN556818	MN556783	-	-	<i>Encephalartos</i> sp.	South
P. ericarum	CPC 19744	KF206170	KF206253	KF289227	KF289291	KF289162	-	Erica gracilis	South
P. ericarum	GZAAS 6.1245	KR025419	-	KR025450	KR025460	KR025434	-	Pittosporum tobira	China
P. eugeniae	CBS 445.82	AY042926	KF206288	KF289208	KF289246	KF289139	KY855891	Eugenia aromatica	Indone
P. fallopiae	MUCC0113	AB454307	-	-	AB704228	-	-	Fallopia japonica	Japan
P. foliorum	CBS 447.68	KF170309	KF206287	KF289201	KF289247	KF289132	-	Taxus baccata	Nether
P. gardeniicola	MUCC0117	AB454310	-	-	AB704230	-	-	Gardenia jasminoides	Japan
P. gardeniicola	MUCC0089	AB454303	-	-	-	-	-	Gardenia jasminoides	Japan
P. gaultheriae	CBS 447.70	JN692543	KF206298	JN692531	KF289248	JN692508	-	Gaultheria humifusa	USA
P. gwangjuensis	CNUFC NJ1-12	OK285195	-	OM038511	OM001471	-	-	Torreya nucifera	South
P. gwangjuensis	CNUFC NJ1-12- 1	OK285196	-	OM038512	OM001472	-	-	Torreya nucifera	South
P. hagahagaensis	CBS 144592	MK442614	MK442550	MK442705	MK442641	MK442657	-	Carissa bispinosa	South
P. hakeicola	CBS 143492	MH107907	MH107953	MH108025	MH107984	MH107999	-	<i>Hakea</i> sp.	Austra
P. hamamelidis	MUCC149	KF170289	-	-	KF289309	-	-	Hamamelis japonica	Japan
P. harai	MUCC0038	AB454277	-	-	AB704218	-	-	Aucuba japonica	Japan
P. hostae	CGMCC 3.14355	JN692535	-	JN692523	JN692511	JN692503	-	Hosta plantaginea	China
P. hubeiensis	CGMCC 3.14986	JX025037	-	JX025042	JX025032	JX025027	-	Viburnum odoratissimim	China
P. hubeiensis	CGMCC 3.14987	JX025038	-	JX025043	JX025033	JX025028	-	Viburnum odoratissimim	China
P. hymenocallidicola	CBS 131309	JQ044423	JQ044443	KF289211	KF289242	KF289142	-	Hymenocallis littoralis	Austra
P. hymenocallidicola	CPC 19331	KF170303	KF206254	KF289212	KF289290	KF289143	-	Hymenocallis littoralis	Austra
P. hypoglossi	CBS 434.92	FJ538367	KF206299	FJ538425	FJ538483	JF343695	KY855892	Ruscus aculeatus	Italy
P. hypoglossi	CBS 101.72	FJ538365	KF206326	FJ538423	FJ538481	JF343694	-	Ruscus aculeatus	Italy
P. ilicis-aquifolii	CGMCC 3.14358	JN692538	-	JN692526	JN692514	-	-	llex aquifolium	China
P. ilicis-aquifolii	CGMCC 3.14359	JN692539	-	JN692527	JN692515	-	-	llex aquifolium	China
P. illicii	24-1-1	MF198235	MF198240	MF198237	MF198243	-	-	Illicium verum	China
P. illicii	16-16-1	MF198234	MF198239	MF198236	MF198242	-	-	Illicium verum	China
P. iridigena	CBS 143410	MG934459	-	MG934502	MG934466	-	-	<i>lris</i> sp.	South
P. kerriae	MAFF 240047	AB454266	-	-	_	-	-	Kerria japonica	Japan

Species	Strain no.	GenBank acc	ession number	S				Hosts	Countr
		ITS	LSU	TEF-1a	ACT	GAPDH	RPB2		
P. kobus	MUCC0049	AB454286	-	-	AB704221	-	-	Magnolia kobus	Japan
P. lauridiae	CBS 145559	MK876404	MK876445	MK876498	MK876460	MK876472	MK876489	Lauridia tetragona	South
P. leucothoicola	MUCC553	AB454370	-	-	KF289310	-	-	Leucothoe catesbaei	Japan
P. ligustricola	MUCC0024	AB454269	-	-	AB704212	-	-	Ligustrum obtusifolium	Japan
P. longicauda	BRIP 66984	MH971220	-	-	-	-	-	Eustrephus latifolius	Austral
P. maculata	CPC 18347	JQ743570	JQ743593	KF009700	KF014016	-	-	<i>Musa</i> sp.	Austral
P. maculata	BRIP 46622	JQ743567	-	KF009692	KF014013		-	<i>Musa</i> sp.	Austral
P. maculata	NTP-Dc 40103	KU708539	KU697331	KU716093	KU697322	-	-	<i>Musa</i> sp.	Austral
P. mangiferae	IMI 260576	JF261459	KF206222	JF261501	JF343641	JF343748	-	Mangifera indica	India
P. mangifera- indicae	MFLUCC 10- 0029	KF170305	KF206240	KF289190	KF289296	KF289121	-	Mangifera indica	Thailar
P. mate	1636497	KP195189	-	-	-	-	-	llex paraguariensis	Argenti
P. mate	1636496	KP195188	-	-	-	-	-	llex paraguariensis	Argenti
P. mimusopisicola	CBS 138899	KP004447	MH878626	-	-	-	-	Mimusops zeyheri	South
P. minima	CBS 585.84	KF206176	KF206286	KF289204	KF289249	KF289135	-	Acer rubrum	USA
P. miurae	MUCC0065	AB454291	-	-	AB704224	-	-	Lindera praecox	Japan
P. musaechinensis	GZAAS 6.1247	KF955294	-	KM816639	KM816627	KM816633	-	<i>Musa</i> sp.	China
P. musaechinensis	GZAAS 6.1384	KF955295	-	KM816640	KM816628	KM816634	-	<i>Musa</i> sp.	China
P. musarum	BRIP 55434	JQ743584	-	-	-	-	-	<i>Musa</i> sp.	India
P. musarum	BRIP 55435	JQ743583	-	-	-	-	-	<i>Musa</i> sp.	Thailar
P. musarum	GZAAS 6.1228	KF955293	KF955299	KM816638	KM816626	KM816632	-	Musa acuminata	China
P. musarum	BRIP 57360	JX997136	-	KF009740	-	-	-	-	Thailar
P. neopyrolae	CBS 134750	NR_145201	MH877561	-	AB704233	-	-	Pyrola asarifolia	Japan
P. oblongifolae	SAUCC210052	OM248445	OM232088	OM273893	OM273897	OM273901	-	Garcinia oblongifolia	China
P. oblongifolae	SAUCC210055	OM248442	OM232085	OM273890	OM273894	OM273898	-	Garcinia oblongifolia	China
P. oblongifolae	SAUCC210054	OM248443	OM232086	OM273891	OM273895	OM273899	-	Garcinia oblongifolia	China
P. oblongifolae	SAUCC210053	OM248444	OM232087	OM273892	OM273896	OM273900	-	Garcinia oblongifolia	China
P. ophiopogonis	KACC 47754	KP197057	-	-	-	-	-	Ophiopogon japonicus	South
P. ophiopogonis	LrLF11	MG543713	-	-	-	-	-	Lycoris radiata	China
P. owaniana	CBS 776.97	FJ538368	KF206293	FJ538426	KF289254	JF343767	-	Brabejum stellatifolium	South
P. owaniana	CPC 14901	JF261462	KF206303	JF261504	KF289243	JF343766	-	Brabejum stellatifolium	South
P.	MUCC124	AB454317	-	-	AB704232	-	-	Pachysandra terminalis	Japan

Species	Strain no.	GenBank acc	ession number	rs				Hosts	Countr
		ITS	LSU	TEF-1a	ACT	GAPDH	RPB2		
P. paracapitalensis	CPC 26517	KY855622	KY855796	KY855951	KY855677	KY855735	KY855894	Citrus floridana	Italy
P. paracapitalensis	CPC 26518	KY855623	KY855797	KY855952	KY855678	KY855736	KY855895	Citrus floridana	Italy
P. paracitricarpa	CPC 27169	KY855635	KY855809	KY855964	KY855690	KY855748	KY855907	Citrus limon	Greece
P. paracitricarpa	ZJUCC 200933	JN791626	KY855813	JN791468	JN791544	KY855752	KY855911	Citrus sinensis	China
P. parthenocissi	CBS 111645	EU683672	-	JN692530	JN692518	-	-	Parthenocissus quinquefolia	USA
P. partricuspidatae	NBRC 9466	KJ847424	-	KJ847446	KJ847432	KJ847440	-	Parthenocissus tricuspidata	Japan
P. partricuspidatae	NBRC 9757	KJ847425	-	KJ847447	KJ847433	KJ847441	-	Parthenocissus tricuspidata	Japan
P. paxistimae	CBS 112527	KF206172	KF206320	KF289209	KF289239	KF289140	-	Paxistima mysinites	USA
P. persooniae	CBS 143409	MG934460	-	MG934503	MG934467	MG934475	-	-	Austral
P. philoprina	CBS 587.69	KF154278	KF206297	KF289206	KF289250	KF289137	-	llex aquifolium	Spain
P. pilospora	MUCC 2915	LC542597	LC543423	LC543445	LC543465	-	-	Chamaecyparis pisifera	Japan
P. pilospora	MUCC 2922	LC542598	LC543424	LC543446	LC543466	-	-	Juniperus chinensis	Japan
P. podocarpi	CBS 111646	AF312013	KF206323	KC357671	KC357670	KF289169	-	Podocarpus falcatus	South
P. podocarpi	CBS 111647	KF154276	KF206322	KF289232	KF289235	KF289168	-	Podocarpus lanceolata	South
P. podocarpicola	CBS 728.79	KF206173	KF206295	KF289203	KF289252	KF289134	-	Podocarpus maki	USA
P. pseudotsugae	CBS 111649	KF154277	KF206321	KF289231	KF289236	KF289167	-	Pseudotsuga menziesii	USA
P. psidii	CBS 100250	FJ538351	-	FJ538409	FJ538467	-	-	Psidium guajava	Brazil
P. pterospermi	SAUCC210104	OM249954	OM249956	OM273902	OM273904	OM273906	-	Pterospermum heterophyllum	China
P. pterospermi	SAUCC210406	OM249955	OM249957	OM273903	OM273905	OM273907	-	Pterospermum heterophyllum	China
P. pyrolae	IFO 32652	AB041242	-	-	-	-	-	Erica carnea	-
P. religiosa	1592	LN865107	-	-	-	-	-	Ficus benjamina	Philipp
P. rhaphiolepidis	MUCC0432	AB454349	-	-	AB704242	-	-	Rhaphiolepis indica	Japan
P. rhizophorae	NCYUCC 19- 0352	MT360030	MT360039	-	MT363248	MT363250	-	Rhizophora stylosa	Taiwar
P. rhizophorae	NCYUCC 19- 0358	MT360031	MT360040	-	MT363249	-	-	Rhizophora stylosa	Taiwar
P. rhodorae	CBS 901.69	KF206174	KF206292	KF289230	KF289256	KF289166	-	<i>Rhododendron</i> sp.	Nether
P. rizhaoensis	CFCC 57579	OP537081	OP542427	OP554271	OP554274	-	-	Ophiopogon japonicus	China
P. rizhaoensis	CFCC 57580	OP537082	OP542428	OP554272	OP554275	-	-	Ophiopogon japonicus	China
P. rizhaoensis	CX2	OP537083	OP542429	OP554273	OP554276	-	-	Ophiopogon japonicus	China
P. rubella	CBS 111635	KF206171	EU754194	KF289198	KF289233	KF289129	-	Acer rubrum	USA
P. schimae	CGMCC 3.14354	JN692534	-	JN692522	JN692510	JN692506		Schima superba	China

Species	Strain no.	GenBank ac	Hosts	Count					
		ITS	LSU	TEF-1a	ACT	GAPDH	RPB2		
P. schimicola	CGMCC 3.17319	KJ847426	-	KJ847448	KJ847434	KJ854895	-	Schima superba	China
P. schimicola	CGMCC 3.17320	KJ847427	-	KJ847449	KJ847435	KJ854896	-	Schima superba	China
P. speewahensis	BRIP 58044	KF017269	-	KF017268	-	-	-	Orchids	Austra
P. sphaeropsoidea	MUCC0112	AB454306	-	-	AB704227	-	-	Aesculus carnea	Japan
P. spinarum	CBS 292.90	JF343585	KF206301	JF343606	JF343669	JF343773	KY855913	Chamaecyparis pisifera	France
P. styracicola	CGMCC3.14985	JX025040	-	JX025045	JX025035	JX025030	-	Styrax grandiflorus	China
P. styracicola	CGMCC3.14989	JX025041	-	JX025046	JX025036	JX025031	-	Styrax grandiflorus	China
P. telopeae	CBS 777.97	KF206205	KF206285	KF289210	KF289255	KF289141	-	Telopea speciosissima	Tasma
P. vaccinii	ATCC 46255	KC193585	-	KC193582	KC193580	KC193583	-	Vaccinium macrocarpon	-
P. vaccinii	LC 2795	KR233323	-	-	-	-	-	Vitis macrocarpon	USA
P. vacciniicola	CPC 18590	KF170312	KF206257	KF289229	KF289287	KF289165	-	Vaccinium macrocarpum	USA
P. vitis- rotundifoliae	CGMCC 3.17321	KJ847429	-	KJ847451	KJ847437	KJ847443	-	Vitis rotundifolia	USA
P. vitis- rotundifoliae	CGMCC 3.17322	KJ847428	-	KJ847450	KJ847436	KJ847442	-	Vitis rotundifolia	USA
P. westeae	BRIP 7239c	OP599631	-	OP627090	-	-	-	Clerodendrum inerme (= Volkateria inermis)	Austra
P. yuccae	CBS 117136	JN692541	KF766385	JN692529	JN692517	JN692507	-	Yucca elephantipes	New Zealar
Р. уиссае	CBS 112065	KF206175	-	-	KF289237	-	-	Yucca elephantipes	USA
Botryosphaeria obtusa	CMW 8232	AY972105	-	DQ280419	AY972111	-	-	Conifers	South
B. obtusa	CMW7775	AY236954	-	AY236903	-	-	-	<i>Ribes</i> sp.	USA
B. stevensii	CBS 112553	AY259093	AY928049	AY573219	-	-	-	Vitis vinifera	Portug
B. stevensii	CMW7060	AY236955	-	AY236904	AY972112	-	-	Fraxinus excelsior	Nether

Table 4 Partition model selected for each locus							
Gene region	Model selected under Akaike Information Criterion (AIC)						
ITS, LSU, <i>GAPDH, RPB2</i>	GTR+I+G						
ACT	GTR+G						

HKY + I + G

Results

Sequence alignment and phylogenetic analyses

ACT TEF-1a The concatenated ITS, LSU, *ACT*, *TEF-1a*, *GAPDH* and *RPB2* sequence matrix comprised 208 strains that belong to 106 species of *Phyllosticta*, including four outgroups; *Botryosphaeria obtusa* (CMW 8232 and CMW 7775) and *B. stevensii* (CBS 112553 and CMW 7060) (*Botryosphaeriaceae*). The combined alignment contained 3,107 characters (ITS: 1–505, LSU: 506–1,267, *TEF-1a*: 1,268–1,520, *ACT*:1,521–1,747, *GAPDH*: 1,748–2,366, *RPB2*: 2,367–3,107).

The RAxML analysis yielded the best scoring tree, which was used as the backbone tree (Fig. 3). The results of the ML and MP parameters are provided (Table 5). Single gene trees were also constructed to confirm phylogenetic placement of our isolates. Coupled with combined gene trees, single gene trees support the establishment of our novel taxon, *P. chiangmaiensis* (not illustrated).

Table 5 RAxML and MP analysis parameters								
RAxML analysis parameters								
ML optimization likelihood value		-26813.077229						
ML Tree length		3.525370						
Estimated base frequencies	А	0.213296						
	С	0.287794						
	G	0.280374						
	Т	0.218535						
Substitution rates	AC	1.080680						
	AG	3.097136						
	AT	1.233293						
	CG	1.131194						
	7.420060							
	GT	1.000000						
Gamma distribution shape param	eter α	0.293938						
Distinct alignment patterns		1286						
Undetermined characters or gaps	(%)	40.73						
Maximum parsimonious analysis	param	eters						
MP length: Tree #1		4374						
Total number of characters		3107						
Constant		1934						
Parsimony-informative		974						
Parsimony-uninformative		199						
Tree #1	CI	0.416						
	RI	0.856						
	RC	0.356						
	н	0.584						

Genealogical Concordance Phylogenetic Species Recognition Analysis (GCPSR)

Using both the LogDet transformation and splits decomposition options, the PHI test resulted in a threshold exceeding 0.05 (Φ w = 0.9207) for our newly described taxon, *P. chiangmaiensis* (MFLU22-0176), indicating no significant recombination in the dataset (Fig. 2).

Figure 3 Phylogram generated from maximum likelihood analysis (RAxML) based on the combined ITS, LSU, *TEF-1a, ACT, GAPDH* and *RPB2* matrices of *Phyllosticta*. Maximum likelihood (ML) and maximum parsimony (MP) with bootstrap support \geq 70%, and the posterior probability (PP) values (\geq 0.8) of Bayesian inference (BI) analyses are given at respective nodes as ML/MP/PP. Hyphen (-) represents support values below 70% (ML and MP) and below 0.80 (PP). The tree is rooted with *Botryosphaeria obtusa* (CMW 8232 and CMW 7775) and *B. stevensii* (CBS 112553 and CMW 7060). Type strains are indicated in bold and our isolates are in red. Different background colours indicate the six *Phyllosticta* species complexes

Taxonomy

Phyllosticta chiangmaiensis D. Gomdola & K.D. Hyde, sp. nov. Figure 4

Index Fungorum number: IF 557882, Facesoffungi number: FoF 12965

Etymology – The specific epithet refers to Chiang Mai province, where the specimen was collected.

Holotype – MFLU22-0176

Saprobic on fallen leaves of *Musa* sp. (*Musaceae*). **Sexual morph**: Not observed. **Asexual morph**: Coelomycetous. *Conidiomata* 50–160 × 50–160 µm (\bar{x} =90 × 95 µm, n = 20), solitary, uniloculate, globose to sub-globose, scattered or gregarious, semi-immersed, conspicuous on host surface, black. *Pycnidial wall* 2.75–14.5 µm wide (\bar{x} =7.7 µm, n = 30), comprising 1–2 layers of thick-walled *textura angularis* cells, outer layer dark brown to black, inner layer pale brown. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* 6–14 × 4.5–9 µm (\bar{x} =9.8 × 6.4 µm, n = 25), sub-globose or ellipsoidal or ovoid, guttulate, aseptate, hyaline, smooth. *Conidia* 13–18 × 8.5–12.5 µm (\bar{x} =15.5 × 10.0 µm, n = 60), solitary, ellipsoidal to obovoid, guttulate, verruculose or with a single large central guttule, aseptate, hyaline, smooth-walled, tapering towards a narrowly truncate base and broader apex, surrounded by a mucilaginous *sheath*, thicker on both sides, 1.2–4.7 µm thick (\bar{x} =2.6 µm, n = 60), thinner at the apex and base, 0.2–2.0 µm thick (\bar{x} =1.0 µm, n = 25), with a hyaline, apical mucoid appendage. *Appendages* 4.7–11 × 0.8–1.2 µm (\bar{x} =7.4 × 1.0 µm, n = 10), flexuous, unbranched, straight to curved, tapering towards an acutely rounded tip.

Material examined – Thailand, Chiang Mai Province, forests around the Mushroom Research Center, on fallen dead leaves of *Musa* sp. (*Musaceae*), 1 April 2021, D. Gomdola, (MFLU22-0176, holotype).

Distribution - Thailand.

GenBank accession numbers: ITS = OP693476, LSU = OP693472, TEF-1a = OQ189918, ACT = OQ189922.

Notes – *Phyllosticta chiangmaiensis* is sister to *P. musaechinensis* (GZAAS 6.1247 and GZAAS 6.1384) with strong support (100%ML, 100%MP, 1.00PP) (Fig. 3). Characters of the conidia match the species concept of *Phyllosticta*. Conidial length of *P. chiangmaiensis* ranges from 13–18 µm and that of *P. musaechinensis* (GZAAS 6.1247) is similar, ranging from 14–18 µm. However, conidiomata diameter and sheath thickness of *P. chiangmaiensis* are larger than that of the phylogenetically closely related taxa (Table 6). Other differences and similarities between *P. chiangmaiensis* and sister taxa are given (Table 6). Even though *P. chiangmaiensis* grouped with other species (*P. musaechinensis*, *P. musarum*, *P. maculata*, *P. cavendishii*) that were also isolated from *Musa* sp., it formed distinct lineages. Excluding gaps, in pairwise nucleotide comparisons of the type species of *P. musaechinensis* and *P. chiangmaiensis* (MFLU22-0176), there are 10 nucleotide base pair (bp) differences across ITS (567 nucleotides), 1 bp differences were observed across 433 nucleotides, excluding gaps. Hence, based on the recommendations provided by Chethana et al. (2021c), Jayawardena et al. (2021), Manawasinghe et al. (2021), Pem et al. (2021), we introduce *P. chiangmaiensis* as a new species.

		Ν	lorphological comparis	on of <i>P. chiangmaie</i>	<i>nsis</i> and sister taxa	
			Species			
Species characters		P. chiangmaiensis MFLU22-0176	P. musaechinensis GZAAS 6.1247	P. musarum BRIP 55434	P. maculata CPC 18347	
Morphological features	Conidiomata	Size (µm)	50–160 diam., 50– 160 high	45-145 diam.	69–118 diam., 52–80 high	84–137 diam., 68–132 high
		Shape and colour	Globose to sub- globose, black. Ostiole not observed	Globose or subglobose, black, shiny, with a rounded central ostiole	Pycnidial, ostiolate	Pycnidial, ostiolate
	Conidia	Size (µm)	13-18 × 8.5-12.5	14-18 × 8-12	(12)13-16(20) × (7)9-10(11)	(15)16-19(21) × (9)10- 12(13)
		Shape	Ellipsoidal to obovoid, coarsely guttulate, smooth- walled, broad apex and narrowly truncate base	Ellipsoidal or clavate, coarsely guttulate, thin- and smooth- walled	Oblong, obovoid or ellipsoidal, coarsely guttulate, thin- and smooth-walled, broad rounded or obtuse apex, truncate base becoming obtuse with age	Oblong or obovoid to subclavate, coarsely guttulate, smooth-walled, broad rounded or obtuse apex, truncate base becoming obtuse with age
	Mucilaginous sheath	Thickness (µm)	1.2-4.7	0.5-3.5	1-3	2-4(6)
	Appendage	Length (µm)	4.7-11	4-18.5	(12)14-18(20)	(12)15-26(37)
		Shape	Straight to curved, tapering towards acutely rounded apex	Straight to curved	Straight to curved, tapering towards acute apex	Straight to curved, tapering towards acute apex
Reported morph			Asexual	Asexual	Asexual and sexual	Asexual and sexual
Symptoms			Saprobic	Weak pathogen, causing symptom similar to freckle disease	Leaf spots	Leaf spots
Hosts			<i>Musa</i> sp.	<i>Musa</i> sp.	Musa paradisiaca	<i>Musa</i> sp.
Gene region(s)			ITS, LSU, <i>ACT, TEF-</i> 1a	ITS, ACT, TEF- 1a, GAPDH	ITS	ITS, LSU, ACT, TEF-1a
References			This study	Wu et al. (2014)	Wong et al. (2012)	Wong et al. (2012)

Table 6

Phyllosticta citribrasiliensis O.L. Pereira, Glienke & Crous (2011) Fig. 5

Index Fungorum number: IF831482, Facesoffungi number: FoF 12964

Associated with leaf spots of *Laburnum anagyroides* Medik. (*Fabaceae*). **Sexual morph**: Not observed. **Asexual morph**: Coelomycetous. *Conidiomata* 100–160 × 80–110 µm (\bar{x} =111 × 97.5 µm, n = 15), solitary, uniloculate, globose to sub-globose, scattered, semi-immersed, conspicuous on host surface, black. *Pycnidial walls* 13.7–27 µm wide (\bar{x} =18.6 µm, n = 15), comprising several layers of *textura angularis* cells, outer layers dark brown to black, inner layers pale brown to hyaline. *Ostiole* single, central, 12.5–17.5 µm wide (\bar{x} =14.8 µm, n = 5). *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* 5.6–15 × 1.3–2.6 µm (\bar{x} =10.1 × 2.3 µm, n = 15), enteroblastic, phialidic, integrated, truncate to cylindrical to ampulliform, hyaline, formed from the inner layer of pycnidial wall. *Conidia* 7–9.8 × 4.5–6.6 µm (\bar{x} =8.5 × 5.7 µm, n = 30), solitary, ellipsoidal to obovoid, coarsely guttulate, aseptate, hyaline, smooth-walled, with narrowly truncate base, surrounded by a mucilaginous *sheath*, thicker on both sides, 1.3–2 µm thick (\bar{x} =1.6 µm, n = 20), thinner at apex and base, 0.4–0.9 µm thick (\bar{x} =0.6 µm, n = 20), with a hyaline, apical mucoid appendage. *Appendages* 2.9–27 × 0.7–1.8 µm (\bar{x} =8.3 × 1.1 µm, n = 20), flexuous, unbranched, tapering towards acutely rounded tip.

Material examined – Russia, Krasnodar Region, Sochi, Khostinsky City District, M.V. Frunze Health Care Resort, park, on senescing leaves of *Laburnum anagyroides* (*Fabaceae*), 15 October 2018, Timur S. Bulgakov, T-7583 (MFLU22-0175).

Distribution - Brazil, Russia (Farr and Rossman 2023).

GenBank accession numbers: LSU = OP684319, *TEF-1a* = OQ189917, *ACT* = OQ189921.

Notes – Our strain clusters with the type strain (CBS 100098) as well as other strains of *P. citribrasiliensis* (LGMF09, LGMF08, CPC 17466, CPC 17465, CPC 17464) with strong support (88%ML, 83%MP, 1.00PP) (Fig. 3). Excluding gaps, in pairwise nucleotide comparisons of the type strain of *P. citribrasiliensis* and our isolate (MFLU22-0175), there is no nucleotide base pair (bp) difference across LSU (761 nucleotides) and *ACT* (181 nucleotides), and 1 bp difference across *TEF-1a* (226 nucleotides). Morphological differences and similarities are also given (Table 7). Based on multigene phylogenetic analyses and morphological characters, we establish our strain as *P. citribrasiliensis*, a new host and country record. This is the first time *P. citribrasiliensis* is reported from *Laburnum anagyroides* in Russia (Farr and Rossman 2023).

	Table 7 Comparison of <i>P. citribrasiliensis</i> (type strain) and strain obtained in this study							
Species characters		MFLU22-0175		CBS 100098				
Morphological features	Conidiomata	Size (μm) 100–160 diam., 80–110 high		Up to 250 diam.				
reatures		Shape and color	Solitary, globose to sub-globose, black	Solitary, globose, black, erumpent, exuding colourless to opaque conidial masses				
	Central ostiole	Width (µm)	12.5-17.5	Up to 30 µm				
	Conidia	Size (µm)	7-9.8 × 4.5-6.6	(8)10–12(13) × 6–7(8)				
		Shape	Solitary, ellipsoidal to obovoid, coarsely guttulate, smooth-walled, with narrowly truncate base	Solitary, ellipsoid to obovoid, coarsely guttulate, thin- and smooth-walled, tapering toward a narrowly truncate base				
	Mucilaginous sheath	Thickness (µm)	1.3-2	2-4				
	Appendage	Length (µm)	2.9-27 × 0.7-1.8	7-15 × 1.5-2				
		Shape	Straight to curved	Straight to flexuous, unbranched				
Reported morph			Asexual	Asexual				
Hosts			Laburnum anagyroides	Citrus limon				
Gene region(s)			LSU, ACT, TEF-1a	ITS, LSU, ACT, TEF-1a, GAPDH, RPB2				
References			This study	Glienke et al. (2011)				

Phyllosticta capitalensis Henn. (1908) Fig. 6

Index Fungorum number: IF168326, Facesoffungi number: FoF06888

For morphological description, see Glienke et al. (2011) and Wikee et al. (2013b).

Material examined – Thailand, Chiang Rai market, on fruit of *Phyllanthus emblica* (*Phyllanthaceae*), 3 March 2021, N. Huanraluek, FUA 03/3 (MFLU22-0177, dry culture), living culture (MFLUCC 22–0115); Thailand, Chiang Mai, Doi Inthanon National park, on fallen leaves of *Morus alba* (*Moraceae*), 18 October 2021, D. Gomdola, DG02-L2A (MFLU22-0178, dry culture), living culture (MFLUCC 22–0116); Thailand, Chiang Mai, Doi Inthanon National park, on fallen leaves of *Morus alba* (*Moraceae*), 18 October 2021, *D. Gomdola*, DG02-L2A (MFLU22-0178, dry culture), living culture (MFLUCC 22–0116); Thailand, Chiang Mai, Doi Inthanon National park, on fallen fruit of *Ficus auriculata* (*Moraceae*), 18 October 2021, D. Gomdola, DGD1-L1-N3B (MFLU22-0179, dry culture), living culture (MFLUCC 22–0117).

GenBank accession numbers: (MFLU22-0177: ITS = OP686473, LSU = OP686475, ACT = OQ189919, TEF-1a = OQ189916, RPB2 = OQ189923), (MFLU22-0178: RPB2 = OQ189924), (MFLU22-0179: ITS = OP688119, LSU = OP688118, ACT = OQ189920, RPB2 = OQ189925)

Notes – In our multi-locus phylogenetic analyses, MFLU22-0177, MFLU22-0178 and MFLU22-0179 are in the *P. capitalensis* species complex (Fig. 3). Our isolates of *P. capitalensis* produced pycnidia on PDA. However, no conidia or other morphological characters were observed. Nonetheless, culture characteristics of our isolates are consistent with those described by Wikee et al. (2013b), also shown herein (Fig. 6).

We report our three strains of *P. capitalensis* as new host records in northern Thailand. This is the first time *P. capitalensis* is isolated from *Phyllanthus emblica*, *Morus alba*, and *Ficus auriculata*. *Phyllosticta capitalensis* has previously been reported on other *Ficus* species such as *F. benjamina* in Thailand and *F. macrophylla* in Iran (Wikee et al. 2013a, b; Sabahi et al. 2022; Farr and Rossman 2023). *Phyllosticta capitalensis* (MFLU22-0177 and MFLU22-0179) are established based on multigene phylogenetic analyses. However, *P. capitalensis* (MFLU22-0178) is reported solely based on the *RPB2* gene region.

Excluding gaps, in pairwise nucleotide comparisons of the type species of *P. capitalensis* and our isolate (MFLU22-0177), there is no nucleotide base pair (bp) difference in ITS (523 nucleotides), *ACT* (201 nucleotides), *TEF-1a* (178 nucleotides) and *RPB2* (749 nucleotides), and 1 nucleotide base pair (bp) difference across LSU (763 nucleotides). There is no nucleotide bp difference across *RPB2* (749 nucleotides) when compared with *P. capitalensis* (MFLU22-0178). There is no nucleotides), LSU (763 nucleotides), but 2 bp differences across *RPB2* (749 nucleotides) when compared with *P. capitalensis* (MFLU22-0178). Since there are insignificant differences across each gene region, we determine these three strains as *P. capitalensis*.

Morphological And Nucleotide Base Pair Comparison

The following *Phyllosticta* species have unstable placements in the phylogenetic tree (Fig. 3): *P. ericarum* (CPC 19744 and GZAAS 6.1245) located in the *P. concentrica* species complex, and *P. fallopiae* (MUCC0113), *P. miurae* (MUCC0065) and *P. sphaeropsoidea* (MUCC0112) found in the *P. capitalensis* species complex. Table 8 shows the base pair differences of *P. ericarum* compared to those of *P. citribrasiliensis* (CBS 100098), and base pair differences of the other species mentioned above compared with those of *P. capitalensis* (CBS 128856). Morphological feature comparison of these taxa is given (Table 9).

No nucleotide base pair differences were found in comparison between the type strains of *P. ericarum* and *P. citribrasiliensis* (Table 8). Furthermore, their morphological characters are similar (Table 9). Therefore, we synonymize *P. ericarum* with *P. citribrasiliensis*. *Phyllosticta fallopiae* (MUCC0113), *P. miurae* (MUCC0065) and *P. sphaeropsoidea* (MUCC0112) have sequence data only for ITS and *ACT* gene regions. Since each taxon does not have complete sequence data for all gene regions and lacks complete morphological description, further studies involving more DNA sequence data as well as morphological examination are required to resolve and confirm their taxonomic placement.

Nucleotide base pair differences in each locus		ITS	LSU	ACT	TEF-1a	GAPDH	RPB2
Comparison between:							
P. citribrasiliensis CBS 100098 (has all 6 gene regions)	P. ericarum CPC 19744	0 bp (561 nucleotides)	0 (761 nucleotides)	0 (221 nucleotides)	0 (222 nucleotides)	0 (623 nucleotides)	N/A
	P. ericarum GZAAS 6.1245	0 (594 nucleotides)	N/A	2 (236 nucleotides)	1 (282 nucleotides)	0 (650 nucleotides)	N/A
P. capitalensis CBS 128856 (has all 6 gene regions)	P. fallopiae MUCC0113	0 (557 nucleotides)	N/A	0 (225 nucleotides)	N/A	N/A	N/A
	P. miurae MUCC0065	2 (557 nucleotides)	N/A	0 (225 nucleotides)	N/A	N/A	N/A
	P. sphaeropsoidea MUCC0112	0 (557 nucleotides)	N/A	0 (225 nucleotides)	N/A	N/A	N/A

Table 9 Synopsis of similarities and differences in species that have unstable placeme

Onacion chart at			of similarities and differences in species that have unstable placements					
Species characters			Species					
			P. citribrasiliensis CBS 100098	P. ericarum CPC 19744	P. capitalensis CBS 128856			
					CPC 20252			
Morphological features	Conidiomata	Size (µm)	Up to 250 diam.	Up to 180 diam.	120-125× 135-140			
		Shape and colour	Solitary, globose, black, erumpent, exuding colourless to opaque conidial masses	Solitary, globose, pycnidial, black, erumpent, exuding colourless to opaque conidial masses	Epiphyllous, globose, brown or black			
	Conidia	Size (µm)	(8)10-12(13) × 6-7(8)	(8)9–10(12) × (6)7	8-11× 5- 6			
		Shape	Solitary, aseptate, hyaline, ellipsoid to obovoid, coarsely guttulate, thin- and smooth-walled, tapering towards a narrowly truncate base	Solitary, aseptate, hyaline, ellipsoid or obovoid, coarsely guttulate, or with a single large central guttule, thin- and smooth-walled, tapering towards a narrowly truncate base	Ellipsoidal, hyaline, 1- celled, smooth- walled			
	Mucilaginous sheath	Thickness (µm)	2-4	3-4	-			
	Appendage	Length (µm)	7-15 × 1.5-2	(5)8-10(12) × 1.5(2)	5-8			
		Shape	Straight to flexuous, unbranched	Flexuous, unbranched, tapering towards acutely rounded tip	-			
Hosts			Citrus limon	Erica gracilis	Punica granatum			
Gene region(s)			ITS, LSU, ACT, TEF-1a, GAPDH, RPB2	ITS, LSU, ACT, TEF-1a, GAPDH	ITS, LSU, ACT, TEF- 1a, GAPDH, RPB2			
References			Glienke et al. (2011)	Crous et al. (2012)	Wikee et al. (2013b)			

Discussion

Speculating the number of fungal species is a major challenge for mycologists (Hyde et al. 2020; Wijayawardene et al. 2021a). Based on high throughput sequencing, the most recent estimate of fungal species is 6.28 million (Baldrian et al. 2022). Numerous taxa await discovery, especially in tropical regions (Hawksworth 1991). Considering that Thailand is a tropical country and a fungal biodiversity hotspot, it harbours a huge number of undiscovered taxa (Hyde et al. 2018, 2020). Therefore, more fungal collections and studies should be carried out in tropical regions from a wide number of hosts to report new species and new host records of *Phyllosticta* species.

To date, several *Phyllosticta* species have been reported from different hosts (Tennakoon et al. 2021, 2022). There are 3,212 epithets in Index Fungorum database (Index Fungorum 2023) and 1,495 epithets in Species Fungorum, excluding species that have already been synonymized (Species Fungorum 2023) (accessed 23 February 2023). This huge number might be attributed to the addition of *Phyllosticta* taxa based on host association over the past 200 years. Also, *Phyllosticta* species were previously delineated based on morphology, thereby placing many species have been synonymized (van der Aa and Vanev 2002). To properly estimate the number of *Phyllosticta* species, more research focusing on re-studying type specimens and providing molecular data by recollecting *Phyllosticta* species that were previously isolated solely on the basis of morphological description is required.

Norphanphoun et al. (2020) introduced six individual *Phyllosticta* species complexes based on five gene loci (ITS, LSU, *ACT*, *GAPDH* and *TEF-1a*), which can be used as a broader delimiter of the genus. In our study, the same complexes have been considered. Our phylogenetic trees are consistent with those of previous studies (Wikee et al. 2013a; Jayawardena et al. 2019; Norphanphoun et al. 2020; Zhang et al. 2022; Wang et al. 2023). However, in our analyses, *P. mimusopisicola* (CBS 138899) and *P. rhodorae* (CBS 901.69) clustered in the *P. cruenta* species complex instead of forming a distinct lineage in the *P. rhodorae* species complex as shown in Norphanphoun et al. (2020). Therefore, further studies are required to confirm the taxonomic placement of these species complexes.

The host plants from which we isolated the above-mentioned *Phyllosticta* species are greatly considered for their economic and ecological significance. For example, *Musa* spp. are important in the pharmaceutical and food industries (Qamar et al. 2018). Since *Musa* spp. are staple food crops, they are a major source of income in many developing countries in South America, South-East Asia, and Africa (Kaushal et al. 2022). *Laburnum anagyroides* is cultivated as an

ornamental, with decorative golden-yellow flowers (Heywood 1993). *Phyllanthus emblica* is widely used for its nutritional and therapeutic properties including antioxidant, antidiabetic and antimicrobial effects (Krishnaveni and Mirunalini 2010; Ahmad et al. 2021). *Morus alba* is economically important to the silk industry because it is used to nourish larvae of the silk moth (Watanabe 1958). *Ficus* spp. are cultivated to enhance tropical forest restoration. In view of their fruit production, they act as seedling recruitment foci whereby they attract seed dispersers, thus inducing rapid forest restoration (Cottee-Jones et al. 2016). Also, many frugivorous birds feed on *Ficus* spp. (Corlett 2005, 2006; Caughlin et al. 2012; Lok et al. 2013). With respect to the numerous economic benefits and ecological importance of the above-mentioned hosts, it is important to study and report the diverse fungi associated with them.

Phyllosticta species have a wide global distribution. Owing to the fact that fungi exhibit different lifestyles such as pathogenic, endophytic and saprobic, they play essential roles in the ecosystem (De Silva et al. 2017). Given different environmental and biotic factors, many fungi can switch lifestyles based on their nutritional mode, for example from endophytes to pathogens (Promputtha et al. 2007; Rai and Agarkar 2016). In order to understand the biology and ecosystem functioning of a specific fungal group, it is crucial to study the association and relationship between the host plants and the fungal group of interest. In this study, we reported three strains of *P. capitalensis* from three different hosts. *Phyllosticta capitalensis* is the most commonly isolated endophytic species in the genus and is widely distributed (Chethana et al. 2021d; Manawasinghe et al. 2022). Therefore, it is important to study this group of fungi.

From Table 3, we can decipher that *Phyllosticta* is a generalist, rather than host-specific. However, further research is required to confirm this statement because they exhibit different lifestyles. Some species are host genus or family specific when they manifest as pathogens while as endophytes, most species tend to be generalists (Wikee et al. 2011; Bhunjun et al. 2022). One of the important cryptic fungal phytopathogens with species complexes is *Phyllosticta* (Cai et al. 2011). Cryptic species directly impact the number of fungal species (Wijayawardene et al. 2021b, 2022b). Since most *Phyllosticta* species are cryptic and share similar morphological features, it is arduous to pinpoint homologous characters and delineate these taxa. With the use of polyphasic approaches such as DNA-based characters and GCPSR, coupled with morphological description, several cryptic species can be unmasked. However, in view of their overlapping morphological features, phylogenetic analyses using distinct molecular markers are sometimes insufficient to delineate *Phyllosticta* species (Wang et al. 2020). Therefore, along with the above-mentioned approaches, sequence-based species delimitation methods following Maharachchikumbura et al. (2021) are useful for species delineation of *Phyllosticta*.

Declarations

Acknowledgments

Deecksha Gomdola would like to thank Mae Fah Luang University for providing the "MFU student scholarship 2020" to pursue the Doctor of Philosophy degree program. She also thanks the National Research Council of Thailand (NRCT: Project no. P-19-52624), project entitled "Comparison of Diversity and Biogeographical distribution of Ascomycetous fungi from two protected areas in Turkey and Thailand" under the Doi Inthanon national park permission No. 0402/2804, and the Mushroom Research Foundation (MRF). Kevin D. Hyde thanks the National Research Council of Thailand (NRCT) grant "Total fungal diversity in a given forest area with implications towards species numbers, chemical diversity and biotechnology" (grant no. N42A650547). Ruvishika S. Jayawardena thanks the National Research Council of Thailand, grant for new researcher NRCT5-TRG630010-01, entitled "Biodiversity, taxonomy, phylogeny and evolution of *Colletotrichum* in northern Thailand". Dhanushka N. Wanasinghe would like to thank CAS President's International Fellowship Initiative (grant number 2021FYB0005), the National Science Foundation of China (NSFC) under the project code 32150410362 and the Postdoctoral Fund from Human Resources and Social Security Bureau of Yunnan Province. Timur S. Bulgakov would like to thank the support from the State Task (research theme no. FGRW-2022-0006) of the Federal Research Center "Subtropical Scientific Center of the Russian Academy of Sciences". We also thank Dr Shaun Pennycook for his valuable suggestion on nomenclature for the novel taxon described herein.

Author Contributions

D.G. carried out the experiments, analyzed data and wrote the manuscript. R.S.J., E.H.C.M, D.N.W. and K.D.H. reviewed and provided suggestions to improve the manuscript. T.S.B. collected specimens from Russia. N.H. helped to carry out the experiment partially. All authors have read and agreed to the published version of the manuscript.

Funding

MFU student scholarship 2020; National Research Council of Thailand (NRCT: Project no. P-19-52624), project entitled "Comparison of Diversity and Biogeographical distribution of Ascomycetous fungi from two protected areas in Turkey and Thailand" under the Doi Inthanon national park permission No. 0402/2804; and the Mushroom Research Foundation (MRF).

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

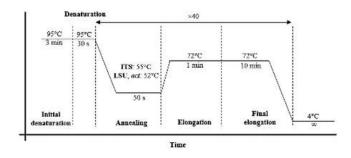
Consent for publication

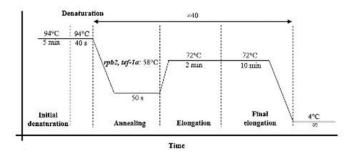
Not applicable.

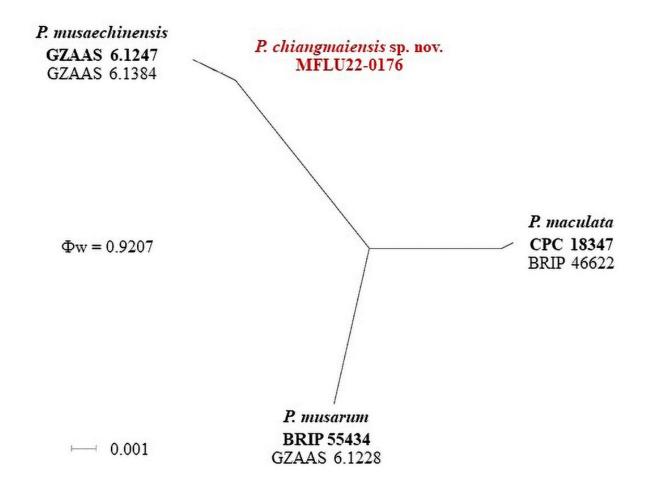
Conflicts of Interest

The authors declare no conflict of interest.

References

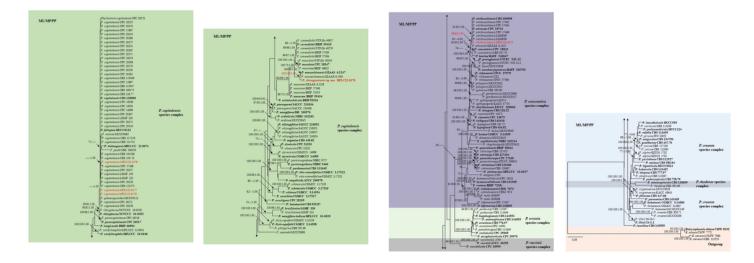

- 1. Ahmad B, Hafeez N, Rauf A, et al (2021) *Phyllanthus emblica*: A comprehensive review of its therapeutic benefits. South African journal of botany 138:278-310. https://doi.org/10.1016/j.sajb.2020.12.028
- 2. Anderson JM, O'Dwyer C, Phanthavong S, Sengsoulichan K, Drenth A, Vilavong S, Burgess LW (2021) First report of *Phyllosticta* spp. associated with banana freckle disease in southern Lao PDR. Australasian Plant Disease Notes 16:1–4. https://doi.org/10.1007/s13314-021-00442-y
- 3. Asiandu AP, Wahyudi A, Ramadhan F, Widjajanti H (2021) Bioprospecting of non-mycorrhizal endophytic fungi associated with ferns and mosses. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 11:416–437. https://doi.org/10.5943/cream/11/1/30
- 4. Baayen RP, Bonants PJM, Verkley G, et al (2002) Nonpathogenic isolates of the citrus black spot fungus, *Guignardia citricarpa*, identified as a cosmopolitan endophyte of woody plants, *G. mangiferae* (*Phyllosticta capitalensis*). Phytopathology 92:464–477. https://doi.org/10.1094/phyto.2002.92.5.464
- 5. Baldassari RB, Wickert E, De Goes A (2008) Pathogenicity, colony morphology and diversity of isolates of *Guignardia citricarpa* and *G. mangiferae* isolated from *Citrus* spp. European Journal of Plant Pathology 120:103–110. https://doi.org/10.1007/s10658-007-9182-0
- 6. Baldrian P, Větrovský T, Lepinay C, Kohout P (2022) High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity 114:539–547. https://doi.org/10.1007/s13225-021-00472-y
- 7. Bhunjun CS, Niskanen T, Suwannarach N, et al (2022) The numbers of fungi: are the most speciose genera truly diverse? Fungal Diversity 1–76. https://doi.org/10.1007/s13225-022-00501-4
- 8. Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665–2681. https://doi.org/10.1534/genetics.105.048975
- 9. Cai L, Udayanga D, Manamgoda DS, Maharachchikumbura SSN, McKenzie EHC, Guo LD, Liu XZ, Bahkali A, Hyde KD (2011) The need to carry out reinventory of plant pathogenic fungi. Tropical Plant Pathology 36:205–213. https://doi.org/10.1590/s1982-56762011000400001
- 10. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348
- 11. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556. https://doi.org/10.1080/00275514.1999.12061051
- 12. Caughlin T, Wheeler JH, Jankowski J, Lichstein JW (2012) Urbanized landscapes favored by fig-eating birds increase invasive but not native juvenile strangler fig abundance. Ecology 93:1571–1580. https://doi.org/10.1890/11-1694.1
- 13. Chaiwan N, Gomdola D, Wang S, et al (2021) https://gmsmicrofungi.org: an online database providing updated information of microfungi in the Greater Mekong Subregion (2021). Mycosphere 12:1513–1526. https://doi.org/10.5943/mycosphere/12/1/19
- 14. Chethana KWT, Jayawardena RS, Chen YJ, et al (2021a) Appressorial interactions with host and their evolution. Fungal Diversity 110:75–107. https://doi.org/10.1007/s13225-021-00487-5
- 15. Chethana KWT, Jayawardena RS, Chen YJ, et al (2021b) Diversity and Function of Appressoria. Pathogens 10:746. https://doi.org/10.3390/pathogens10060746
- 16. Chethana KWT, Manawasinghe IS, Hurdeal VG, et al (2021c) What are fungal species and how to delineate them? Fungal Diversity 109: 1–25. https://doi.org/10.1007/s13225-021-00483-9
- 17. Chethana KWT, Niranjan M, Dong W, et al (2021d) AJOM new records and collections of fungi: 101–150. Asian Journal of Mycology 4:113–260. https://doi.org/10.5943/ajom/4/1/8
- 18. Corlett RT (2005) Interactions between birds, fruit bats and exotic plants in urban Hong Kong, South China. Urban Ecosystems 8:275–283. https://doi.org/10.1007/s11252-005-3260-x
- 19. Corlett RT (2006) Figs (*Ficus, Moraceae*) in Urban Hong Kong, South China1. Biotropica: The Journal of Biology and Conservation 38:116–121. https://doi.org/10.1111/j.1744-7429.2006.00109.x
- 20. Cottee-Jones HEW, Bajpai O, Chaudhary LB, Whittaker RJ (2016) The Importance of *Ficus (Moraceae*) Trees for Tropical Forest Restoration. Biotropica 48:413–419. https://doi.org/10.1111/btp.12304
- 21. Crous PW, Slippers B, Wingfield MJ, et al (2006) Phylogenetic lineages in the *Botryosphaeriaceae*. Studies in Mycology 55:235–253. https://doi.org/10.3114/sim.55.1.235
- 22. Crous PW, Summerell BA, Shivas RG, et al (2012) Fungal Planet description sheets: 107–127. Persoonia: Molecular Phylogeny and Evolution of Fungi 28:138–182. https://doi.org/10.3767/003158512x652633
- 23. De Silva DD, Crous PW, Ades PK, et al (2017) Life styles of *Colletotrichum* species and implications for plant biosecurity. Fungal Biology Reviews 31:155–168. https://doi.org/10.1016/j.fbr.2017.05.001
- 24. Dewdney M, Schubert T, Estes M, et al (2011) Florida citrus pest management guide: citrus black Spot. EDIS.
- 25. Dissanayake AJ, Bhunjun CS, Maharachchikumbura SSN, Liu JK (2020) Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 11:2652–2676. https://doi.org/10.5943/mycosphere/11/1/18
- 26. Donk MA (1968) Report of the committee for fungi and lichens 1964–1969. Taxon 17:578–581. https://doi.org/10.2307/1216075
- 27. EPPO A1 List of pests recommended for regulation as quarantine pests. Available online: https://www.eppo.int/activities/plant_quarantine/A1_list (accessed on 19 December 2022).


- Farr DF, Rossman AY (2023) Fungal databases. Systematic Mycology & Microbiology Laboratory, US National Fungus Collections, ARS, USDA, Beltsville, MD, USA Available online: https://nt.ars-grin.gov/fungaldatabases/fungushost/ (accessed on 23 February 2023).
- 29. Fries EM (1849) Summa vegetabilium Scandinaviae. Bonnier.
- 30. Gabriela M, Zavala M, Ling Er H, et al (2014) Genetic variation among *Phyllosticta* strains isolated from citrus in Florida that are pathogenic or nonpathogenic to citrus. Tropical Plant Patholology 39:119–128. https://doi.org/10.1590/s1982-5676201400020002
- 31. Glienke-Blanco C, Aguilar-Vildoso CI, Carneiro Vieira ML, et al (2002) Genetic variability in the endophytic fungus *Guignardia citricarpa* isolated from citrus plants. Genetics and Molecular Biology 25:251–255. https://doi.org/10.1590/s1415-47572002000200021
- 32. Glienke C, Pereira OL, Stringari D, et al (2011) Endophytic and pathogenic *Phyllosticta* species, with reference to those associated with citrus black spot. Persoonia: Molecular Phylogeny and Evolution of Fungi 26:47–56. https://doi.org/10.3767/003158511x569169
- 33. Gomdola D, Bhunjun CS, Hyde KD, Jeewon R, Pem D, Jayawardena RS (2022) Ten important forest fungal pathogens: a review on their emergence and biology. Mycosphere 13:612–671. https://doi.org/10.5943/mycosphere/13/1/6
- 34. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 41:95–98.
- 35. Hawksworth DL (1989) Family names. CAB International 4.
- 36. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological research 95:641–655. https://doi.org/10.1016/s0953-7562(09)80810-1
- 37. Hawksworth DL, Crous PW, Redhead SA, et al (2011) The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus 2:105–112. https://doi.org/10.5598/imafungus.2011.02.01.14
- 38. Heywood V (1993) Flowering plants of the world. BT Batsford Ltd.
- 39. Huelsenbeck J, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:310–2314. https://doi.org/10.1126/science.1065889
- 40. Huson DH, Kloepper T, Bryant D (2014) SplitsTree 4.0-Computation of phylogenetic trees and networks. Bioinformatics 14:68–73.
- 41. Hyde KD, Nilsson RH, Alias SA, et al (2014) One stop shop: backbones trees for important phytopathogenic genera: I (2014). Fungal Diversity 67:21–125. https://doi.org/10.1007/s13225-014-0298-1
- 42. Hyde KD, Norphanphoun C, Chen J, et al (2018) Thailand's amazing diversity: up to 96% of fungi in northern Thailand may be novel. Fungal Diversity 93:215–239. https://doi.org/10.1007/s13225-018-0415-7
- 43. Hyde KD, Jeewon R, Chen YJ, et al (2020) The numbers of fungi: is the descriptive curve flattening? Fungal Diversity 103:219–271. https://doi.org/10.1007/s13225-020-00458-2
- 44. Index Fungorum (2023) Available online: http://www.indexfungorum.org/Names/Names.asp (accessed on 23 February 2023).
- 45. Jayasiri SC, Hyde KD, Ariyawansa HA, et al (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74:3–18. https://doi.org/10.1007/s13225-015-0351-8
- 46. Jayawardena RS, Hyde KD, Jeewon R, et al (2019) One stop shop II: taxonomic update with molecular phylogeny for important phytopathogenic genera: 26–50 (2019). Fungal Diversity 94:41–129. https://doi.org/10.1007/s13225-019-00418-5
- 47. Jayawardena RS, Hyde KD, de Farias ARG, et al (2021) What is a species in fungal plant pathogens? Fungal Diversity 109:239–266. https://doi.org/10.1007/s13225-021-00484-8
- 48. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20:1160–1166. https://doi.org/10.1093/bib/bbx108
- 49. Kaushal M, Kolombia Y, Alakonya AE, et al (2022) Subterranean Microbiome Affiliations of Plantain (*Musa* spp.) Under Diverse Agroecologies of Western and Central Africa. Microbial Ecology 84:580–593. https://doi.org/10.1007/s00248-021-01873-x/figures/7
- 50. Kotzé JM (1981) Epidemiology and Control of citrus black spot in South Africa. Plant Disease 65:945. https://doi.org/10.1094/pd-65-945
- 51. Krishnaveni M, Mirunalini S (2010) Therapeutic potential of *Phyllanthus emblica* (amla): The ayurvedic wonder. Journal of Basic and Clinical Physiology and Pharmacology 21:93–105. https://doi.org/10.1515/jbcpp.2010.21.1.93/html
- 52. Kuo K, Hoch HC (2018) The parasitic relationship between *Phyllosticta ampelicida* and *Vitis vinifera*. Mycologia 88:626–634. https://doi.org/10.1080/00275514.1996.12026695
- 53. Liu JK, Phookamsak R, Doilom M, et al (2012) Towards a natural classification of *Botryosphaeriales*. Fungal Diversity 57:149–210. https://doi.org/10.1007/s13225-012-0207-4
- 54. Liu Y, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16:1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
- 55. Lok A, Ang W, Ng B, et al (2013) Native fig species as a keystone resource for the Singapore urban environment. Raffles Museum of Biodiversity Research National University of Singapore: Singapore 10:1217–5687. https://doi.org/10.13140/2.1.1217.5687
- 56. Maharachchikumbura SSN, Chen Y, Ariyawansa HA, et al (2021) Integrative approaches for species delimitation in *Ascomycota*. Fungal Diversity 109:155–179. https://doi.org/10.1007/s13225-021-00486-6
- 57. Manawasinghe IS, Phillips AJL, Xu J, et al (2021) Defining a species in fungal plant pathology: beyond the species level. Fungal Diversity 109:267–282. https://doi.org/10.1007/s13225-021-00481-x


- Manawasinghe IS, Calabon MS, Jones EBG, et al (2022) Mycosphere notes 345–386. Mycosphere 13:454–557. https://doi.org/10.5943/mycosphere/13/1/3
- 59. McManus PS (1998) First report of early rot of cranberry caused by *Phyllosticta vaccinii* in Wisconsin. Plant Disease 82:350. https://doi.org/10.1094/pdis.1998.82.3.350a
- 60. Miller M, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the 2011 TeraGrid Conference: extreme digital discovery 1–8. https://doi.org/10.1145/2016741.2016785
- 61. Myllys L, Stenroos S, Thell A (2002) New genes for phylogenetic studies of lichenized fungi: glyceraldehyde-3-phosphate dehydrogenase and beta-tubulin genes. The Lichenologist 34:237–246. https://doi.org/10.1006/lich.2002.0390
- 62. Nilsson RH, Hyde KD, Pawłowska J, et al (2014) Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity 67:11–19. https://doi.org/10.1007/s13225-014-0291-8
- 63. Norphanphoun C, Hongsanan S, Gentekaki E, Chen YJ, Kuo CH, Hyde KD (2020) Differentiation of species complexes in *Phyllosticta* enables better species resolution. Mycosphere 11:2542–2628. https://doi.org/10.5943/mycosphere/11/1/16
- 64. Nylander JAA (2004) MrModeltest v2. Evolutionary Biology Center, Uppsala University.
- 65. O'Donnell K, Kistlerr HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95:2044–2049. https://doi.org/10.1073/pnas.95.5.2044
- 66. Okane I, Lumyong S, Nakagiri A, Ito T (2003) Extensive host range of an endophytic fungus, *Guignardia endophyllicola* (anamorph: *Phyllosticta capitalensis*). Mycoscience 44:353–363. https://doi.org/10.1007/s10267-003-0128-x
- 67. Persoon CH (1818) Traité sur les champignons comestibles, contenant lindication des espèces nuisibles; a lhistoire des champignons.
- 68. Pem D, Jeewon R, Chethana KWT, et al (2021) Species concepts of *Dothideomycetes*: classification, phylogenetic inconsistencies and taxonomic standardization. Fungal Diversity 109:283–319. https://doi.org/10.1007/s13225-021-00485-7
- 69. Promputtha I, Lumyong S, Dhanasekaran V, et al (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microbial Ecology 53:579–590. https://doi.org/10.1007/s00248-006-9117-x
- 70. Qamar S, Shaikh A (2018) Therapeutic potentials and compositional changes of valuable compounds from banana-A review. Trends in Food Science and Technology 79:1–9. https://doi.org/10.1016/j.tifs.2018.06.016
- 71. Rai M, Agarkar G (2016) Plant-fungal interactions: What triggers the fungi to switch among lifestyles? Critical Reviews in Microbiology 42:428–438. https://doi.org/10.3109/1040841x.2014.958052
- 72. Rambaut A, Drummond A (2014) FigTree v1. 3.1 Institute of Evolutionary Biology. University of Edinburgh.
- 73. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- 74. Sabahi F, Mafakheri H, Mirtalebi M, et al (2022) First report of *Phyllosticta capitalensis* causing leaf spot of Japanese privet (*Ligustrum japonicum*) in Iran. Journal of General Plant Pathology 88:217–223. https://doi.org/10.1007/s10327-022-01063-8
- 75. Schoch CL, Shoemaker RA, Seifert KA, et al (2006) A multigene phylogeny of the *Dothideomycetes* using four nuclear loci. Mycologia 98:1041–1052. https://doi.org/10.1080/15572536.2006.11832632
- 76. Seaver FJ (1922). Phyllostictaceae. North American Flora 6:3-84.
- 77. Senanayake IC, Rathnayaka AR, Marasinghe DS, et al (2020) Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11:2678–2754. https://doi.org/10.5943/mycosphere/11/1/20
- 78. Species Fungorum (2023) Available online: http://www.speciesfungorum.org/Names/Names.asp (accessed on 23 February 2023).
- 79. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- 80. Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW (2007) A multi-gene phylogeny of *Clavicipitaceae* (*Ascomycota*, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44:1204–1223. https://doi.org/10.1016/j.ympev.2007.03.011
- 81. Sutton B (1980) The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute.
- 82. Swoford DL (2002) PAUP: phylogenetic analysis using parsimony, version 4.0 b10.
- 83. Taylor JW, Jacobson DJ, Kroken S, et al (2000) Phylogenetic Species Recognition and Species Concepts in Fungi. Fungal Genetics and Biology 31:21–32. https://doi.org/10.1006/fgbi.2000.1228
- 84. Tennakoon DS, Kuo CH, Maharachchikumbura SSN, et al (2021) Taxonomic and phylogenetic contributions to *Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius* and *Morus australis* leaf litter inhabiting microfungi. Fungal Diversity 108: 1–215. https://doi.org/10.1007/s13225-021-00474-w
- 85. Tennakoon DS, Kuo CH, Purahong W, et al (2022) Fungal community succession on decomposing leaf litter across five phylogenetically related tree species in a subtropical forest. Fungal Diversity 115:73–103. https://doi.org/10.1007/s13225-022-00508-x
- 86. Tran NT, Miles AK, Dietzgen RG, Drenth A (2019) *Phyllosticta capitalensis* and *P. paracapitalensis* are endophytic fungi that show potential to inhibit pathogenic *P. citricarpa* on citrus. Australasian Plant Pathology 48:281–296. https://doi.org/10.1007/s13313-019-00628-0
- 87. Van Der Aa H (1973) Studies in *Phyllosticta* I. Studies in Mycology 5:1–110. https://ci.nii.ac.jp/naid/10024288814

- 88. Van Der Aa H, Vanev S (2002) A revision of the species described in *Phyllosticta*.
- 89. Viala P, Ravaz L (1892) Sur la dénomination botanique (Guignardia bidwellii) du black-rot. Typogr. Charles Boehm.
- 90. Watanabe T (1958) Substances in mulberry leaves which attract silkworm larvae (Bombyx mori). Nature 182:325-326.
- 91. Wang M, Liu B, Ruan R, et al (2020) Genomic sequencing of *Phyllosticta citriasiana* provides insight into its conservation and diversification with two closely related *Phyllosticta* species associated with citrus. Frontiers in Microbiology 10:2979. https://doi.org/10.3389/fmicb.2019.02979/full
- 92. Wang CB, Wang TT, Ma CY, Xue H, Li Y, Piao CG Jiang N (2023). *Phyllosticta rizhaoensis* sp. nov. causing leaf blight of *Ophiopogon japonicus* in China. Fungal Systematics and Evolution 11:43–50. https://doi.org/10.3114/fuse.2023.11.03
- 93. White T, Bruns T, Lee S, et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols 64:315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
- 94. Wijayawardene NN, Phillips AJL, Tibpromma S, Dai DQ, et al (2021a) Looking for the undiscovered asexual taxa: case studies from lesser studied life modes and habitats. Mycosphere 12:1290–1333. https://doi.org/10.5943/mycosphere/12/1/17
- 95. Wijayawardene NN, Hyde KD, Anand G, Dissanayake LS, Tang LZ, Dai DQ (2021b) Towards incorporating asexually reproducing fungi in the natural classification and notes for pleomorphic genera. Mycosphere 12:238–405. https://doi.org/10.5943/mycosphere/12/1/4
- 96. Wijayawardene NN, Hyde KD, Dai DQ, et al (2022a) Outline of Fungi and fungus-like taxa-2021. Mycosphere 13:53-453. https://doi.org/10.5943/mycosphere/13/1/2
- 97. Wijayawardene NN, Phillips AJL, Pereira DS, et al (2022b) Forecasting the number of species of asexually reproducing fungi (*Ascomycota* and *Basidiomycota*). Fungal Diversity 114:463–490. https://doi.org/10.1007/S13225-022-00500-5
- 98. Wikee S, Udayanga D, Crous PW, et al (2011) *Phyllosticta* An overview of current status of species recognition. Fungal Diversity 51:43–61. https://doi.org/10.1007/S13225-011-0146-5
- 99. Wikee S, Wulandari NF, McKenzie EHC, Hyde KD (2012) *Phyllosticta ophiopogonis* sp. nov. from *Ophiopogon japonicus (Liliaceae*). Saudi journal of biological sciences 19:13–16. https://doi.org/10.1016/j.sjbs.2011.10.003
- 100. Wikee S, Lombard L, Nakashima C, et al (2013a) A phylogenetic re-evaluation of *Phyllosticta* (*botryosphaeriales*). Studies in Mycology 76:1–29. https://doi.org/10.3114/sim0019
- 101. Wikee S, Lombard L, Crous PW, et al (2013b) *Phyllosticta capitalensis*, a widespread endophyte of plants. Fungal Diversity 60:91–105. https://doi.org/10.1007/s13225-013-0235-8
- 102. Wingfield MJ, Wilhelm De Beer Z, Slippers B, et al (2011) One fungus, one name promotes progressive plant pathology. Molecular plant pathology 13:604–613. https://doi.org/10.1111/J.1364-3703.2011.00768.X
- 103. Wong MH, Crous PW, Henderson J, et al (2012) *Phyllosticta* species associated with freckle disease of banana. Fungal Diversity 56:173–187. https://doi.org/10.1007/s13225-012-0182-9
- 104. Wong MH, Henderson J, Aitken EAB, Drenth A (2013) Mode of Infection of *Phyllosticta maculata* on Banana as Revealed by Scanning Electron Microscopy. Journal of Phytopathology 161:135–141. https://doi.org/10.1111/jph.12042
- 105. Wu S, Liu Y, Yuan J, et al (2014) *Phyllosticta* species from banana (*Musa* sp.) in Chongqing and Guizhou Provinces, China. Phytotaxa 188:135–144. https://doi.org/10.11646/phytotaxa.188.3.2
- 106. Wulandari N, To-Anun C, Hyde K, et al (2009) *Phyllosticta citriasiana* sp. nov., the cause of citrus tan spot of *Citrus maxima* in Asia. Fungal Diversity 34:23–39. https://wi.knaw.nl/images/ResearchGroups/Phytopathology/pdf/wulandari etal 2009.pdf
- 107. Wulandari NF, To-Anun C, Cai L, et al (2010) *Guignardia/Phyllosticta* species on banana. Cryptogamie, Mycologie 31:403–418. http://www2.dpi.qld.gov.au/horticulture/7926.html
- 108. Zhang Z, Liu X, Zhang X, et al (2022) Morphological and phylogenetic analyses reveal two new species and a new record of *Phyllosticta* (*Botryosphaeriales, Phyllostictaceae*) from Hainan, China. Mycokeys 91:1–23. https://doi.org/10.3897/mycokeys.91.84803
- 109. Zhou N, Chen Q, Carroll G, Zhang N, Shivas RG, Cai L (2015) Polyphasic characterization of four new plant pathogenic *Phyllosticta* species from China, Japan, and the United States. Fungal Biology 119:433–446. https://doi.org/10.1016/j.funbio.2014.08.006

Figures



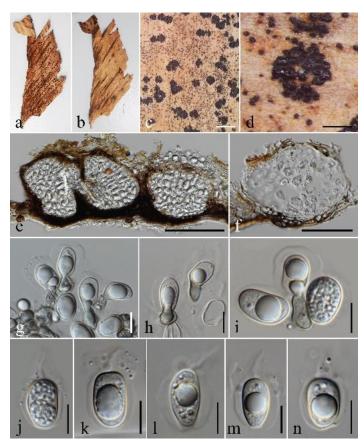
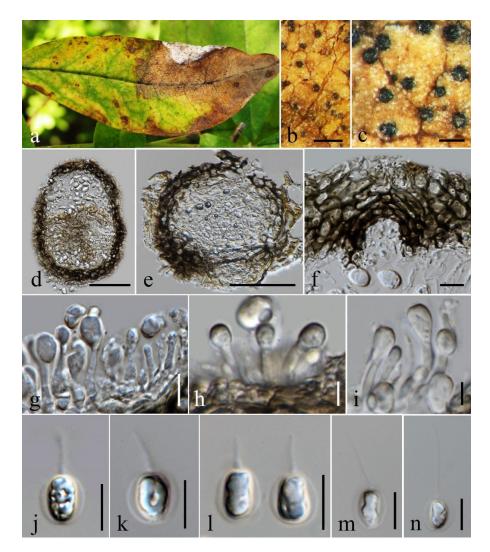
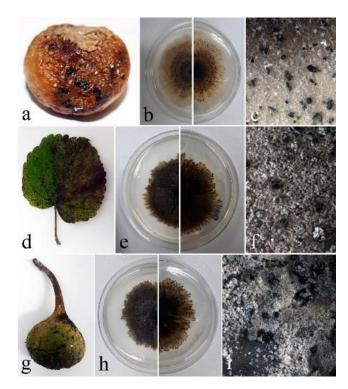


Figure 2

PHI test result using LogDet transformation and splits decomposition. The new taxon is given in red



Phylogram generated from maximum likelihood analysis (RAxML) based on the combined ITS, LSU, *TEF-1a, ACT, GAPDH* and *RPB2* matrices of *Phyllosticta*. Maximum likelihood (ML) and maximum parsimony (MP) with bootstrap support \geq 70%, and the posterior probability (PP) values (\geq 0.8) of Bayesian inference (BI) analyses are given at respective nodes as ML/MP/PP. Hyphen (-) represents support values below 70% (ML and MP) and below 0.80 (PP). The tree is rooted with *Botryosphaeria obtusa* (CMW 8232 and CMW 7775) and *B. stevensii* (CBS 112553 and CMW 7060). Type strains are indicated in bold and our isolates are in red. Different background colours indicate the six *Phyllosticta* species complexes


Figure 4

Phyllosticta chiangmaiensis (MFLU22-0176, holotype) **a**-**b** Appearance of conidiomata on leaves of *Musa* sp. **c**-**d** Close up of conidiomata on substrate. **e**-**f** Section through conidiomata showing pycnidial wall. **g**-**i**Conidiogenous cells and developing conidia. **j**-**n** Conidia surrounded by mucilaginous sheath, with an apical appendage. Scale bars: **c** = 2 mm, **d**= 500 μ m, **e** = 100 μ m, **f** = 50 μ m, **g**-**n** = 10 μ m

Figure 5

Phyllosticta citribrasiliensis (MFLU22-0175) **a** Leaf spot on *Laburnum anagyroides* **b**-**c** Close up of conidiomata on substrate. **d**-**e**Section through conidiomata showing pycnidial wall. **f** Ostiole **g**-**i**Conidiogenous cells and developing conidia. **j**-**n** Conidia surrounded by mucilaginous sheath, with an apical appendage. Scale bars: **b** = 500 μ mc = 200 μ m, **d**-**e** = 50 μ m, **f**, **g**, **j**-**n** = 10 μ m, **h**-**i** = 5 μ m

Figure 6

Phyllosticta capitalensis **a** Fruit of *Phyllanthus emblica* **b**-**c** Colony and pycnidia of MFLU22-0177 **d** Dead leaves of *Morus alba* **e**-**f** Colony and pycnidia of MFLU22-0178. **g** Fruit of *Ficus auriculata* **h**-**i** Colony and pycnidia of MFLU22-0179