Abby M, Beaudette A, Lee H, Trevors T (2003) Polychlorinated biphenyl (PCB) degradation and persistence of a gfp-marked Ralstonia eutropha H850 in PCB-contaminated soil. Appl Microbiol Biotechnol 63:222-230. https://doi.org/10.1007/s00253-003-1380-x\
Ali S A, Kumar S, Mohanty A K, Behare P (2018) Draft genome sequence of Lactobacillus fermentum NCDC 400, isolated from a traditional Indian dairy product. Genome announcements, 6(2).
Ali S A, Singh P, Tomar S K, Mohanty A K, Behare P (2020) Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum. Journal of proteomics, 213, 103600.
Ali S A, Kaur G, Kaushik J K, Malakar D, Mohanty A K, Kumar S (2017) Examination of pathways involved in leukemia inhibitory factor (LIF)-induced cell growth arrest using label-free proteomics approach. Journal of proteomics, 168, 37-52. 10.1016/j.jprot.2017.08.008
Aleksic J, Bizzari F, Cai Y, Davidson B, De Mora K, Ivakhno S, Seshasayee L, Nicholson J, Wilson J, Elfick A et al (2007) Development of a novel biosensor for the detection of arsenic in drinking water. IET Synth Biol 1:87–90. doi: 10.1049/iet-stb:20060002
Alexander, M (1985). Biodegradation of organic chemicals. Environ Sci Technol 19:106-111. doi: 10.5772/56194
Anderson, J.C., Voigt, C.A. and Arkin, A.P., 2007. Environmental signal integration by a modular AND gate. Molecular systems biology, 3(1), p.133.
Anosova, I., Kowal, E.A., Dunn, M.R., Chaput, J.C., Van Horn, W.D. and Egli, M., 2015. The structural diversity of artificial genetic polymers. Nucleic acids research, 44(3), pp.1007-1021.
Antonucci I, Gallo G, Limauro D, Contursi P, Ribeiro L, Blesa A, Berenguer J, Bartolucci S, Fiorentino G (2018) Characterization of a promiscuous cadmium and arsenic resistance mechanism in Thermus thermophilus HB27 and potential application of a novel bioreporter system. Microb Cell Fact 17:78. https://doi.org/10.1186/s12934-018-0918-7
Arias-Barreiro R, Okazaki K, Koutsaftis A, Inayat-Hussain S, Tani A, Katsuhara M, Kimbara K, Mori I (2010) A bacterial biosensor for oxidative stress using the constitutively expressed redox-sensitive protein roGFP2. Sensors 10:6290-6306. doi: 10.3390/s100706290
Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L. and Mori, H., 2006. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Molecular systems biology, 2(1), pp.2006-0008
Bachmann A, Walet P, Wijnen P, De Bruin W, Huntjens L, Roelofsen W and Zehnder J (1988). Biodegradation of alpha-and beta-hexachlorocyclohexane in a soil slurry under different redox conditions. Appl. Environ. Microbiol 54:143-149. doi: 10.1128/aem.54.1.143-149.1988
Barrios-Estrada C, de Jesús Rostro-Alanis M, Muñoz-Gutiérrez D, Iqbal M, Kannan S. Parra-Saldívar R (2018) Emergent contaminants: endocrine disruptors and their laccase-assisted degradation–a review. Sci Total Environ. 612:1516-1531. https://doi.org/10.1016/j.scitotenv.2017.09.013
Behare P V, Ali S A, McAuliffe O (2020) Draft Genome Sequences of Fructobacillus fructosus DPC 7238 and Leuconostoc mesenteroides DPC 7261, Mannitol-Producing Organisms Isolated from Fructose-Rich Honeybee-Resident Flowers on an Irish Farm. Microbiology Resource Announcements, 9(50).
Bensasson, D., Boore, J.L. and Nielsen, K.M., 2004. Genes without frontiers?. Heredity, 92(6), pp.483-489).
Bereza-Malcolm L, Aracic S, Franks E (2016) Development and application of a synthetically-derived lead biosensor construct for use in gram-negative bacteria. Sensors 16:2174. doi: 10.3390/s16122174
Bereza-Malcolm L, Aracic S, Kannan R, Mann G, Franks E (2017) Functional characterization of gram-negative bacteria from different genera as multiplex cadmium biosensors. Biosens Bioelectron 94:380-387. doi:10.1016/j.bios.2017.03.029
Berset Y, Merulla D, Joublin A, Hatzimanikatis V, Van Der Meer R (2017) Mechanistic modeling of genetic circuits for ArsR arsenic regulation. ACS Synth Biol 6:862-874. https://doi.org/10.1021/acssynbio.6b00364
Bezerra, A.R., Guimarães, A.R. and Santos, M.A., 2015. Non-standard genetic codes define new concepts for protein engineering. Life, 5(4), pp.1610-1628.
Bharagava N, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Safety 147:102-109. https://doi.org/10.1016/j.ecoenv.2017.08.040
Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal M (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation–A review. Environ Int 124:336-353. https://doi.org/10.1016/j.envint.2019.01.011
Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal M (2017) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants–a review. Sci Total Environ 576:646-659. doi: 10.1016/j.scitotenv.2016.10.137
Biran I, Rissin M, Ron Z, Walt R (2003) Optical imaging fiber-based live bacterial cell array biosensor. Anal Biochem 315:106-113. https://doi.org/10.1016/S0003-2697(02)00700-5
Boldt S, Sorensen J, Karlson U, Molin S, Ramos C (2004) Combined use of different Gfp reporters for monitoring single-cell activity of a genetically modified PCB degrader in the rhizosphere of Alfalfa. FEMS Microbiol Ecol 48:139-148. https://doi.org/10.1016/j.femsec.2004.01.002
Boschetti C, Carr A, Crisp A, Eyres I, Wang-Koh Y, Lubzens E, Barraclough G, Micklem G and Tunnacliffe A (2012). Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genet 8:p.e1003035. doi.org/10.1371/journal.pgen.1003035
Branco R, Cristóvão A, Morais PV (2013) Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PLoS One 8, e5005. https://doi.org/10.1371/journal.pone.0054005
Brophy A, Voigt A (2014) Principles of genetic circuit design. Nat Methods 11:508-520. https://doi.org/10.1038/nmeth.2926
Cameron E, Collins J (2014) Tunable protein degradation in bacteria. Nat Biotechnol 32:1276-1281. https://doi.org/10.1038/nbt.3053
Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher C (1994) Green fluorescent protein as a marker for gene expression. Science 263:802-805. doi:10.1126/science.8303295
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L. and Suh, S., 2020. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), pp.3494-3511.
Chandrasekhar V, Das S, Yadav R, Hossain S, Parihar R, Subramaniam G, Sen P (2012) Novel chemosensor for the visual detection of copper (II) in aqueous solution at the ppm level. Inorg Chem 51:8664-8666. https://doi.org/10.1021/ic301399a
Chang J, Voyvodic L, Zúñiga A, Bonnet J (2017) Microbially derived biosensors for diagnosis, monitoring and epidemiology. Microb Biotechnol 10:1031-1035. doi: 10.1111/1751-7915.12791
Chang, T.M.S. and Prakash, S., 2001. Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Molecular Biotechnology, 17(3), pp.249-260. doi.org/10.1385/MB:17:3:249
Chen B, Lee L, Heng C, Chua N, Teo S, Choi J, Leong J, Foo L, Chang W (2018) Synthetic biology toolkits and applications in Saccharomyces cerevisiae. Biotechnol Adv 36:1870-1881. https://doi.org/10.1016/j.biotechadv.2018.07.005
Chen H, Lin C, Guo H, Yeh, C (2017) Development of a pigment-based whole-cell biosensor for the analysis of environmental copper. RSC Adv 7:29302-29305. https://doi.org/10.1039/C7RA03778C
Chen Y, Ho M, Shis L, Gupta C, Long J, Wagner S, Ott W, Josić K, and Bennett R (2018) Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. Nat Commun 9:64. https://doi.org/10.1038/s41467-017-02473-5
Chien K, Shih H (2007) An empirical study of the implementation of green supply chain management practices in the electrical and electronic industry and their relation to organizational performances. Int J Environ Sci Tech 4:383-394.
Chin, J.W., 2014. Expanding and reprogramming the genetic code of cells and animals. Annual review of biochemistry, 83, pp.379-408.
Cocârţă M, Stoian A, and Karademir A (2017) Crude oil contaminated sites: evaluation by using risk assessment approach. Sustainability 9:1365. doi: 10.3390/su9081365
Coelho C, Branco R, Natal-da-Luz T, Sousa P, and Morais V (2015) Evaluation of bacterial biosensors to determine chromate bioavailability and to assess ecotoxicity of soils. Chemosphere 128:62-69. https://doi.org/10.1016/j.chemosphere.2014.12.026
Dana V, Kuiken T, Rejeski D, and Snow A (2012) Four steps to avoid a synthetic-biology disaster. Nature 483:29. https://doi.org/10.1038/483029a
Daunert S, Barrett G, Feliciano S, Shetty S, Shrestha S, and Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705-2738. doi:10.1021/cr990115p
Davies J and Davies D (2010). Origins and evolution of antibiotic resistance. Microbiol Molecu Boil Revie 74:417-433. doi: 10.1128/MMBR.00016-10
Edward Raja C, Selvam S (2011) Construction of green fluorescent protein based bacterial biosensor for heavy metal remediation. Int J Environ Sci Tech 8:793-798. https://doi.org/10.1007/BF03326262
Elcin E, Öktem A (2018) Whole-cell fluorescent bacterial bioreporter for arsenic detection in water. Int J Environ Sci Technol 16:5489-5500. https://doi.org/10.1007/s13762-018-2077-0
Elcin E, Öktem A (2020) Immobilization of fluorescent bacterial bioreporter for arsenic detection. J Environ Health Sci Eng 18:137-148. https://doi.org/10.1007/s40201-020-00447-2
Erbe L, Adams C, Taylor B, and Hall M (1996) Cyanobacteria carrying an smt-lux transcriptional fusion as biosensors for the detection of heavy metal cations. J Indust Microbiol 17:80-83. https://doi.org/10.1007/BF01570047
Fekih B, Zhang C, Li P, Zhao Y, Alwathnani A, Saquib Q, Rensing C, and Cervantes C (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:2473. doi: 10.3389/fmicb.2018.02473
Friedland, A.E., Lu, T.K., Wang, X., Shi, D., Church, G. and Collins, J.J., 2009. Synthetic gene networks that count. science, 324(5931), pp.1199-1202.
Gallagher, R.R., Patel, J.R., Interiano, A.L., Rovner, A.J. and Isaacs, F.J., 2015. Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic acids research, 43(3), pp.1945-1954.
Gander, M.W., Vrana, J.D., Voje, W.E., Carothers, J.M. and Kalvins, E., 2016. Robust digital logic circuits in eukaryotic cells with CRISPR/dCas9 NOR gates. bioRxiv, p.041871. doi.org/10.1101/041871
Gautam P, Suniti S, Kumari A, Madathil, D, and Nair B (2012) A review on recent advances in biosensors for detection of water contaminaion. Int J Environ Sci 2:1565-1574.
Gerdes, K., Poulsen, L.K., Thisted, T., Nielsen, A.K., Martinussen, J. and Andreasen, P.H., 1990. The hok killer gene family in gram-negative bacteria. New Biologist, 2(11), pp.946-956.
Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., Benders, G.A., Montague, M.G., Ma, L., Moodie, M.M. and Merryman, C., 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. science, 329(5987), pp.52-56
Gireesh-Babu P, Chaudhari A (2012) Development of a broad-spectrum fluorescent heavy metal bacterial biosensor. Mol Biol Rep 39:11225–11229. doi: 10.1007/s11033-012-2033-x.
Goni-Moreno A, Nikel I (2019) High-performance biocomputing in synthetic biology–integrated transcriptional and metabolic circuits. Front Bioeng Biotechnol 7:40. https://doi.org/10.3389/fbioe.2019.00040
Gronow M (1984) Biosensors. Trends Biochem Sci 9:336-340. https://doi.org/10.1007/s10534-004-5787-3
Gueu S, Yao B, Adouby K, Ado G (2007) Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int J Environ Sci Tech 4:11-17. https://doi.org/10.1007/BF03325956
Gui Q, Lawson T, Shan S, Yan L, and Liu Y (2017) The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17:1623. doi:10.3390/s17071623
Gupta S, Sarkar S, Katranidis A, Bhattacharya J (2019) Development of a Cell-Free Optical Biosensor for Detection of a Broad Range of Mercury Contaminants in Water: A Plasmid DNA-Based Approach. ACS omega 4:9480-9487. https://doi.org/10.1021/acsomega.9b00205
Gursahani H, Gupta G (2011) Decolourization of textile effluent by a thermophilic bacteria Anoxybacillus rupiensis. J Pet Environ Biotechnol 2:1-4. doi: 10.4172/2157-7463.1000111
Handa K, Jindal R (2019) Chronic toxicity of hexavalent chromium affects the morphology and behaviour of Ctenopharyngodon idellus (Cuvier and Valenciennes). Int J Fisheri Aqua Stud 7:46-51.
Hansen H, Sorensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:483-494. doi: 10.1007/s00248-001-0025-9
Hayat MT, Nauman M, Nazir N, Ali S. and Bangash N (2019) Environmental Hazards of Cd: Past, Present, and Future. In: Cd Toxicity and Tolerance in Plants Academic Press, pp 163-183.
Hayes, F. and Van Melderen, L., 2011. Toxins-antitoxins: diversity, evolution and function. Critical reviews in biochemistry and molecular biology, 46(5), pp.386-408
Hayes, F., 2003. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science, 301(5639), pp.1496-1499.
Hendrix, C., Rosemeyer, H., Verheggen, I., Van Aerschot, A., Seela, F. and Herdewijn, P., 1997. 1′, 5′‐Anhydrohexitol oligonucleotides: synthesis, base pairing and recognition by regular oligodeoxyribonucleotides and oligoribonucleotides. Chemistry–A European Journal, 3(1), pp.110-120.
Hernandez-Vargas G, Sosa-Hernández J, Saldarriaga-Hernandez S, Villalba-Rodríguez A, Parra-Saldivar R, Iqbal H (2018) Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors 8:29. doi: 10.3390/bios8020029
Heuer, H. and Smalla, K., 2007. Horizontal gene transfer between bacteria. Environ. Biosafe. Res 6:3-13. doi: 10.1051/ebr:2007034
Hoch, J.A. and Silhavy, T.J. eds., 1995. Two-component signal transduction (Vol. 2). Washington, DC: ASM press.
Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Frontiers in chemistry, 2, 63.
Hou Q, Ma A, Wang T, Lin J, Wang H, Du B, Zhuang X, Zhuang G (2015) Detection of bioavailable cadmium, lead, and arsenic in polluted soil by tailored multiple Escherichia coli whole-cell sensor set. Analytical and bioanalytical chemistry 407:6865-71. doi: 10.1007/s00216-015-8830-z
Hu Q, Li L, Wang Y, Zhao W, Qi H, Zhuang G (2010) Construction of WCB-11: A novel phiYFP arsenic-resistant whole-cell biosensor. J Environ Sci 22:1469-74. https://doi.org/10.1016/S1001-0742(09)60277-1
Huang W, Yang H, Sun W, Liao C (2015) Development of a set of bacterial biosensors for simultaneously detecting arsenic and mercury in groundwater. Environ Sci Pollut Res Int 22:10206-10213. https://doi.org/10.1007/s11356-015-4216-1
Hui Y, Guo Y, Liu L, Zheng Q, Gao X, and Zhang W (2020) Construction of a RFP-lacZα bicistronic reporter system and its application in lead biosensing. PloS one15:e0228456. https://doi.org/10.1371/journal.pone.0228456
Hurdebise Q, Tarayre C, Fischer C, Colinet G, Hiligsmann S, and Delvigne F (2015) Determination of zinc, cadmium and lead bioavailability in contaminated soils at the single-cell level by a combination of whole-cell biosensors and flow cytometry. Sensors 15:8981-8999. doi: 10.3390/s150408981
Hutchins R, Tomson B, Wilson T and Ward H (1984). Microbial removal of wastewater organic compounds as a function of input concentration in soil columns. Applied and environmental microbiology, 48:1039-1045.
Hynninen A, Tõnismann K, Virta M (2010) Improving the sensitivity of bacterial bioreporters for heavy metals. Bioeng Bugs 1:132-1138. doi: 10.4161/bbug.1.2.10902
Jain K. and Magrath T (1991) A chemiluminescent assay for quantitation of β-galactosidase in the femtogram range: application to quantitation of β-galactosidase in lacZ-transfected cells. Anal Biochem 199:119-124. doi: 10.1016/0003-2697(91)90278-2
Jia X, Bu R, Zhao T, Wu K (2019) Development of a sensitive and specific whole-cell biosensor for arsenic detection. Appl Environ Microbiol 85:e00694-19. doi: 10.1128/AEM.00694-19
Jia X, Zhao T, Liu Y, Bu R, Wu K (2018) Gene circuit engineering to improve the performance of a whole-cell lead biosensor. FEMS Microbiol. Lett., 365, fny157. https://doi.org/10.1093/femsle/fny157
Jiang B, Li G, Xing Y, Zhang D, Jia J, Cui Z, Luan X, Tang H (2017) A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere 184:384-392. doi: 10.1016/j.chemosphere.2017.05.159
Jiang B, Zhu D, Song Y, Zhang D, Liu Z, Zhang X, Huang E, Li G (2015) Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium (VI)-contaminated soils. Biotechnol Lett 37:343-348. doi: 10.1007/s10529-014-1674-3
Joshi, N., Wang, X., Montgomery, L., Elfick, A. and French, C.E., 2009. Novel approaches to biosensors for detection of arsenic in drinking water. Desalination, 248(1-3), pp.517-523.
Kang G, Choi S, Cha J (2006) Enhanced biodegradation of toxic organophosphate compounds using recombinant Escherichia coli with sec pathway‐driven periplasmic secretion of organophosphorus hydrolase. Biotechnol Prog 22:406-410. doi: 10.1021/bp050356k
Kang Y, Lee W, Jang G, Kim G, Yoon Y (2018) Modulating the sensing properties of Escherichia coli-based bioreporters for Cd and mercury. Appl Microbiol Biotechnol 102:4863-4872. doi: 10.1007/s00253-018-8960-2
Kang Y, Lee W, Kim S, Jang G, Kim G, Yoon Y (2018) Enhancing the copper-sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering. Appl Microbial Biotechnol 102:1513-1521. doi: 10.1007/s00253-017-8677-7
Karbassi R, Nouri J, Mehrdadi N, Ayaz O (2008) Flocculation of heavy metals during mixing of freshwater with Caspian Sea water. Environ Geo 53:1811-1816. https://doi.org/10.1007/s00254-007-0786-7
Kaur G, Ali S A, Kumar S, Mohanty A K, Behare P (2017) Label-free quantitative proteomic analysis of Lactobacillus fermentum NCDC 400 during bile salt exposure. Journal of proteomics, 167, 36-45.
Kaur G, Ali S A, Pachauri S, Malakar D, Kaushik J K, Mohanty A K, Kumar S (2017) Buffalo leukemia inhibitory factor induces differentiation and dome-like secondary structures in COS-1 cells. Cytogenetic and genome research, 151(3), 119-130.
Kim J, Lim W, Jeong H, Lee J, Lee W, Kim T, Lee J (2016) Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens Bioelectron 79:701-708. doi: 10.1016/j.bios.2015.12.101
Komorowicz I, Barałkiewicz D (2016) Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland. Environ Monit Assess 188:504. https://doi.org/10.1007/s10661-016-5477-y
Kumar S, Verma N, Singh K (2017) Development of Cd specific recombinant biosensor and its application in milk samples. Sens Actuators B: Chem 240:248-254. https://doi.org/10.1016/j.snb.2016.08.160
Lacey F, Ye D, Ruffing M (2019) Engineering and characterization of copper and gold sensors in Escherichia coli and Synechococcus sp. PCC 7002. Appl Microbiol Biotechnol 103:2797-2808. https://doi.org/10.1007/s00253-018-9490-7
Lajoie, M.J., Rovner, A.J., Goodman, D.B., Aerni, H.R., Haimovich, A.D., Kuznetsov, G., Mercer, J.A., Wang, H.H., Carr, P.A., Mosberg, J.A. and Rohland, N., 2013. Genomically recoded organisms expand biological functions. science, 342(6156), pp.357-360.
Lajoie, M.J., Söll, D. and Church, G.M., 2016. Overcoming challenges in engineering the genetic code. Journal of molecular biology, 428(5), pp.1004-1021.
Lalithakumari, D., 2011. Microbes: a tribute to clean environment. University of Madras, Chennai.
Lee W, Kim H, Kang Y, Lee Y, Yoon Y (2019) A biosensor platform for metal detection based on enhanced green fluorescent protein. Sensors 19:1846. https://doi.org/10.3390/s19081846
Lehmann M, Riedel K, Adler K, Kunze G (2000) Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosens Bioelectron 15:211-219. doi: 10.1016/S0956-5663(00)00060-9
Lei Y, Mulchandani P, Chen W, Wang J, Mulchandani A (2004) Arthrobacter sp. JS443‐Based Whole Cell Amperometric Biosensor for p‐Nitrophenol. Electroanalysis Int J Devoted Fundamen Prac Aspects Electroanal 16:2030-2034. https://doi.org/10.1002/elan.200403067
Lejon D, Martins J, Leveque J, Spanini L, Pascault N, Landry M, Milloux M, Nowak V, Chaussod R, Ranjard L (2008) Copper dynamics and impacts on microbial communities in soils of variable organic status. Environ Sci Technol 42:2819-2825. https://doi.org/10.1021/es071652r
Li C, Zhou K, Qin W, Tian C, Qi M, Yan X, Han W (2019) A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques, Soil Sediment Contam. Int J 28:380-394. https://doi.org/10.1080/15320383.2019.1592108
Liss, M., Daubert, D., Brunner, K., Kliche, K., Hammes, U., Leiherer, A. and Wagner, R., 2012. Embedding permanent watermarks in synthetic genes. PloS one, 7(8), p.e42465
Liu J, Olsson G, Mattiasson B (2004) Short-term BOD (BODst) as a parameter for online monitoring of biological treatment process Part I. A novel design of BOD biosensor for easy renewal of bio-receptor. Biosen Bioelect 20:562-570. https://doi.org/10.1016/j.bios.2004.03.008
Liu X, Germaine KJ, Ryan D, Dowling DN (2010) Whole-cell fluorescent biosensors for bioavailability and biodegradation of polychlorinated biphenyls. Sensors 10:1377-1398. doi: 10.3390/s100201377
Liu Z, Hong Q, Xu H, Jun W, Li P (2006) Construction of a genetically engineered microorganism for degrading organophosphate and carbamate pesticides. Int Biodeterior Biodegrade 58:65-69. https://doi.org/10.1016/j.ibiod.2006.07.009
Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 13:10-23. https://doi.org/10.1021/ac5039863
Mahbub R, Krishnan K, Naidu R, Megharaj M (2017) Development of a whole cell biosensor for the detection of inorganic mercury. Environ Technol Innov 8:64-70. https://doi.org/10.1016/j.eti.2017.04.003
Mahmood Q, Asif M, Shaheen S, Hayat MT, Ali S (2019) Cd Contamination in Water and Soil, In Cd Toxicity and Tolerance in Plants (pp. 141-161). Academic Press.
Maret W, Wedd A eds., 2014. Binding, transport and storage of metal ions in biological cells. Royal Society of Chemistry 2
Martinez R, Heil R, Charles TC (2019) An engineered GFP fluorescent bacterial biosensor for detecting and quantifying silver and copper ions. BioMetals 32:265-272. https://doi.org/10.1007/s10534-019-00179-3
Merulla D, van der Meer R (2015) Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. ACS Synth Biol 5:36-45. https://doi.org/10.1021/acssynbio.5b00111
Mittal D, Kaur G, Ali S A (2020) Nanoparticles based sustainable agriculture and food science: Recent Advances and Future Outlook. Frontiers in Nanotechnology, 2, 10.
Mukai, T., Lajoie, M.J., Englert, M. and Söll, D., 2017. Rewriting the genetic code. Annual review of microbiology, 71, pp.557-577.
Mulchandani A, Rogers R (1998) Enzyme and micriobial biosensors: Techniques and protocols. NJ, USA.
Mulchandani P, Hangarter M, Lei Y, Chen W, Mulchandani A (2005) Amperometric microbial biosensor for p-nitrophenol using Moraxella sp.-modified carbon paste electrode. Biosens Bioelectron 21:523-527. doi: 10.1016/j.bios.2004.11.011
Naether J, Slawtschew S, Stasik S, Engel M, Olzog M, Wick Y, Timmis N, Heipieper J (2013) Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach. Appl Environ Microbiol 79:4282-4293. doi: 10.1128/AEM.00694-13
Nataraj B H, Ali S A, Behare P V, Yadav H (2020) Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial cell factories, 19(1), 1-22.
Ng P, Palombo A, Bhave M (2012) Identification of a copper-responsive promoter and development of a copper biosensor in the soil bacterium Achromobacter sp. AO22. World J Microbiol Biotechnol 28:2221–2228. doi: 10.1007/s11274-012-1029-y
Nielsen A, Der S, Shin J, Vaidyanathan P, Paralanov V, Strychalski A, Ross D, Densmore D, Voigt A (2016) Genetic circuit design automation. Science 352, p.aac7341. doi: 10.1126/science.aac7341
Nouri J, Lorestani B, Yousefi N, Khorasani N, Hasani AH, Seif S Cheraghi M (2011) Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead–zinc mine (Hamedan, Iran). Environ Earth Sci, 62:639-644. https://doi.org/10.1007/s12665-010-0553-z
Oda Y, Nakamura I, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mut Res Environ Mut Rel Sub 147:219-229. doi: 10.1016/0165-1161(85)90062-7
Ostrov, N., Landon, M., Guell, M., Kuznetsov, G., Teramoto, J., Cervantes, N., Zhou, M., Singh, K., Napolitano, M.G., Moosburner, M. and Shrock, E., 2016. Design, synthesis, and testing toward a 57-codon genome. Science, 353(6301), pp.819-822.
Paitan, Y., Biran, I., Shechter, N., Biran, D., Rishpon, J. and Ron, E.Z., 2004. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Analytical biochemistry, 335(2), pp.175-183.
Papi, R.M., Chaitidou, S.A., Trikka, F.A. and Kyriakidis, D.A., 2005. Encapsulated Escherichia coli in alginate beads capable of secreting a heterologous pectin lyase. Microbial Cell Factories, 4(1), pp.1-8. doi.org/10.1186/1475-2859-4-35
Paquola C, Asif H, de Bragança Pereira A, Feltes C, Bonatto D, Lima C and Menck M (2018). Horizontal gene transfer building prokaryote genomes: genes related to exchange between cell and environment are frequently transferred. J Molecul Evol 86:190-203. doi.org/10.1007/s00239-018-9836-x
Park D, Taffet M (2019) Combinatorial sensor design in Caulobacter crescentus for selective environmental uranium detection. ACS Synth Biol 8:807-817. https://doi.org/10.1021/acssynbio.8b00484
Park H, Lee H, Oh H, Lee K, Kim K (2002) Detection of aromatic pollutants by bacterial biosensors bearing gene fusions constructed with the dnaK promoter of Pseudomonas sp.DJ-12. J Microbiol Biotechnol 12:417-422.
Park H, Lee K, Chae C, Kim K (2004) Construction of transformant reporters carrying fused genes using pcbc promoter of Pseudomonas sp. DJ-12 for detection of aromatic pollutants. Environ Monit Assess 92:241–251. doi: 10.1023/b:emas.0000014513.00754.95
Park N, Sohn J, Oh B, Kwon O, Rhee K, Hur G, Lee Y, Gellissen G, Kang A (2007) Identification from transcriptome analysis and application to whole cell heavy metal detection systems of the Cd-inducible Hansenula polymorpha SEO1 gene promoter. Appl Environ Microbiol 73:5990-6000.
Petänen T, Romantschuk M (2000) Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts. Anal Chim Acta 456:55-61. https://doi.org/10.1016/S0003-2670(01)00963-1
Petänen T, Virta M, Karp M, Romantschuk M (2011) Construction and Use of Broad Host Range Mercury and Arsenite Sensor Plasmids in the Soil Bacterium Pseudomonas fluorescens OS8. Microb Ecol 41:360-368. https://doi.org/10.1007/s002480000095
Pola-López A, Camas-Anzueto L, Martínez-Antonio A, Luján-Hidalgo C, Anzueto-Sánchez G, Ruíz-Valdiviezo M, Grajales-Coutiño R, González C (2018) Novel arsenic biosensor “POLA” obtained by a genetically modified E. coli bioreporter cell. Sens Actuators B: Chemi 254:1061-1068. https://doi.org/10.1016/j.snb.2017.08.006
Pragya P, Kaur G, Ali S A, Bhatla S, Rawat P, Lule V, Kumar S, Mohanty A K, Behare P, (2017) High-resolution mass spectrometry-based global proteomic analysis of probiotic strains Lactobacillus fermentum NCDC 400 and RS2. Journal of proteomics, 152, pp.121-130.
Rabbowa E, Rettberg P, Baumstark-Khan C, Horneck G (2002) SOS-LUX- and LAC-FLUORO-TEST for the quantification of genotoxic and/or cytotoxic effects of heavy metal salts. Anal Chimi Acta 456:31–39. https://doi.org/10.1016/S0003-2670(01)01594-X
Rasheed T, Bilal M, Nabeel F, Adeel M, and Iqbal M (2018) Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification and treatment. Environ Int 122:52-66.
Renella G, Giagnoni L (2016) Light dazzles from the black box: whole-cell biosensors are ready to inform on fundamental soil biological processes. Chem Biol Tech Agri 3:8. https://doi.org/10.1186/s40538-016-0059-3
Rijavec T, Zrimec J, Oven F, Viršek K, Somrak M, Podlesek Z, Gostinčar C, Leedjärv A, Virta M, Tratnik S, Horvat M (2017) Development of highly sensitive, automatized and portable whole-cell hg biosensor based on environmentally relevant microorganisms. Geomicrobiol J 34:596-605. https://doi.org/10.1080/01490451.2016.1257661
Roberto F, Barnes M, Bruhn F (2002) Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 58:181-188. doi: 10.1016/s0039-9140(02)00266-7
Roggo C, van der Meer JR (2007) Miniaturized and integrated whole cell living bacterial sensors in field applicable autonomous devices. Current opinion in biotechnology 45:24-33. https://doi.org/10.1016/j.copbio.2016.11.023
Ron E (2007) Biosensening environmental pollution. Curr Opin Biotechnol 18:252-256. doi: 10.1016/j.copbio.2007.05.005
Saeidi, N., Wong, C.K., Lo, T.M., Nguyen, H.X., Ling, H., Leong, S.S.J., Poh, C.L. and Chang, M.W., 2011. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Molecular systems biology, 7(1), p.521.
Saltepe B, Kehribar S, Su Yirmibeşoğlu S, Şafak Şeker O (2017) Cellular biosensors with engineered genetic circuits. ACS Sens 3:13-26. https://doi.org/10.1021/acssensors.7b00728
Schöning, K.U., Scholz, P., Guntha, S., Wu, X., Krishnamurthy, R. and Eschenmoser, A., 2000. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3'→ 2') oligonucleotide system. Science, 290(5495), pp.1347-1351.
Setty, Y., Mayo, A.E., Surette, M.G. and Alon, U., 2003. Detailed map of a cis-regulatory input function. Proceedings of the National Academy of Sciences, 100(13), pp.7702-7707.
Sevilla E, Yuste L, Rojo F (2015) Marine hydrocarbonoclastic bacteria as whole‐cell biosensors for n‐alkanes. Microb Biotechnol 8:693-706. doi: 10.1111/1751-7915.12286
Shao Y, Howe J, Porter R, Glover A (2002) Novel cyanobacterial biosensor for detection of herbicides. Appl Environ Microbial 68:5026–5033. doi: 10.1128/AEM.68.10.5026-5033.2002
Shemer B, Koshet O, Yagur-Kroll S, Belkin S (2017) Microbial bioreporters of trace explosives. Curr Opin Biotechnol 45:113-119. https://doi.org/10.1016/j.copbio.2017.03.003
Siddiki R, Kawakami Y, Ueda S, Maeda I (2011) Solid phase biosensors for arsenic or cadmium composed of a trans factor and cis element complex. Sensors 11:10063-10073. doi: 10.3390/s111110063
Singh N, Gupta K, Kumar A, Sharma B (2017) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5:70. https://doi.org/10.3389/fchem.2017.00070
Soboleski R, Oaks J, Halford P (2005) Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J 19:440-442. doi: 10.1096/fj.04-3180fje
Song Y, Jiang B, Tian S, Tang H, Liu Z, Li C, Jia J, Huang E, Zhang X, Li G (2014) A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environ Pollu 195:178-184. https://doi.org/10.1016/j.envpol.2014.08.024
Stanton, B.C., Nielsen, A.A., Tamsir, A., Clancy, K., Peterson, T. and Voigt, C.A., 2014. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nature chemical biology, 10(2), pp.99-105. doi.org/10.1038/nchembio.1411
Sun Y, Zhao X, Zhang D, Ding A, Chen C, Huang E, Zhang H (2017) New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site. Chemosphere 186:510-518. doi: 10.1016/j.chemosphere.2017.08.027.
Swindoll M, Aelion M and Pfaender K (1988). Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities. Appl Environ Microbiol 54:212-217. doi: 10.1128/AEM.54.1.212-217.1988
Tani C, Inoue K, Tani Y, Harun-ur-Rashid M, Azuma N, Ueda S, Yoshida K, Maeda I (2009) Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter–reporter units in tandem for detection of arsenic. J Bioscie Bioengineer 108:414-20. https://doi.org/10.1016/j.jbiosc.2009.05.014
Tauriainen S, Virta M, and Karp M (2000) Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria. Water Res 34:2661-2666. https://doi.org/10.1016/S0043-1354(00)00005-1
Tauriainen S, Virta M, Chang W, Karp M (1999) Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Anal. Biochem 272:191-198. https://doi.org/10.1006/abio.1999.4193
Thomas M and Nielsen M (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Revie. Microbial. 3:711-721. doi.org/10.1038/nrmicro1234
Trögl J, Chauhan A, Ripp S, Layton C, Kuncová G, Sayler S (2012) Pseudomonas fluorescens HK44: lessons learned from a model whole-cell bioreporter with a broad application history. Sensors 12:1544-1571. doi: 10.3390/s120201544
Turpeinen R, Virta M, Haggblom M (2003) Analysis of arsenic bioavailability in contaminated soils. Environ Toxic Chem 22:1-6. https://doi.org/10.1002/etc.5620220101
Van Der Meer R, De Vos M, Harayama S and Zehnder J (1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Molecul Biol Revie 56:677-694.
Vidal, L., Pinsach, J., Striedner, G., Caminal, G. and Ferrer, P., 2008. Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. Journal of biotechnology, 134(1-2), pp.127-136
Villacieros M, Whelan C, Mackova M, Molgaard J, Sánchez-Contreras M, Lloret J, Aguirre de Cárcer D, Oruezábal I, Bolanos L, Macek T et al (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687-2694. doi: 10.1128/AEM.71.5.2687-2694.2005
Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540-551. doi: 10.1007/s002160051549
Volk MJ, Lourentzou I, Mishra S, Vo LT, Zhai C, Zhao H (2020) Biosystems Design by Machine Learning. ACS Synthetic Biology. https://doi.org/10.1021/acssynbio.0c00129
Wagner J, Engesser R, Ermes K, Geraths C, Timmer J, Weber W (2019) Synthetic biology-inspired design of signal-amplifying materials systems. Mat Today 22:25-34. https://doi.org/10.1016/j.mattod.2018.04.006
Wan X, Volpetti F, Petrova E, French C, Maerkl J, Wang B (2019) Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nat Chem Biol 15:540-548. https://doi.org/10.1038/s41589-019-0244-3
Wang B, Barahona M, Buck M (2015) Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities. Nucleic Acids Res 43:1955-1964. doi: 10.1093/nar/gku1388
Wang B, Buck M (2014) Rapid engineering of versatile molecular logic gates using heterologous genetic transcriptional modules. Chem Commun 50:11642-11644. https://doi.org/10.1039/C4CC05264A
Wang B, Kitney I, Joly N, Buck M (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2:508. https://doi.org/10.1038/ncomms1516
Wang D, Zheng Y, Fan X, Xu L, Pang T, Liu T, Liang L, Huang S, Xiao Q (2020) Visual detection of Hg2+ by manipulation of pyocyanin biosynthesis through the Hg2+-dependent transcriptional activator MerR in microbial cells. J. Bioscie. Bioengineer. 129:223-8. https://doi.org/10.1016/j.jbiosc.2019.08.005
Wang, B., Kitney, R.I., Joly, N. and Buck, M., 2011. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nature communications, 2(1), pp.1-9. doi.org/10.1038/ncomms1516
Wang, J., Verbeure, B., Luyten, I., Lescrinier, E., Froeyen, M., Hendrix, C., Rosemeyer, H., Seela, F., Van Aerschot, A. and Herdewijn, P., 2000. Cyclohexene nucleic acids (CeNA): serum stable oligonucleotides that activate RNase H and increase duplex stability with complementary RNA. Journal of the American Chemical Society, 122(36), pp.8595-8602.
Wei H, Ze-Ling S, Le-Le C, Wen-Hui Z, Chuan-Chao D (2014) Specific detection of bioavailable phenanthrene and mercury by bacterium reporters in the red soil. Int J Environ Sci Technol 11:685-694. doi: 10.1007/s13762-013-0216-1
Welsh S, Kay A (1997) Reporter gene expression for monitoring gene transfer. Curr Opin Biotechnol 8:617-622. https://doi.org/10.1016/S0958-1669(97)80038-9
Wepener V, Van Vuren H, Du Preez H (2001) Uptake and distribution of copper, iron and zinc mixture in gill, liver and plasma of a freshwater teleost, Tilapia sparrmanii. Water SA 27:99–108. doi: 10.4314/wsa.v27i1.5016
Whangsuk W, Thiengmag S, Dubbs J, Mongkolsuk S, Loprasert S (2016) Specific detection of the pesticide chlorpyrifos by a sensitive genetic-based whole cell biosensor. Anal Biochem 493:11-13. doi: 10.1016/j.ab.2015.09.022
Wicke N, Radford S, French E (2018) A simple chromogenic whole-cell arsenic biosensor based on Bacillus subtilis. bioRxiv 395178. doi: https://doi.org/10.1101/395178
Wilkes, R.A. and Aristilde, L., 2017. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of applied microbiology, 123(3), pp.582-593. doi.org/10.1111/jam.13472
World Health Organization, 2004, Guidelines for drinking-water quality (Vol. 1). World Health Organization
Wright O, Stan B and Ellis T (2013). Building-in biosafety for synthetic biology. Microbiol 159:1221-1235. doi.org/10.1099/mic.0.066308-0
Wu H, Le D, Mulchandani A, Chen W (2009) Optimization of a whole‐cell cadmium sensor with a toggle gene circuit. Biotechnol Prog 25, 898-903. doi: 10.1002/btpr.203
Xing C, Chen J, Zheng X, Chen L, Chen M, Wang L, Li X (2020) Functional metagenomic exploration identifies novel prokaryotic copper resistance genes from the soil microbiome. Metallomics (3):387-95. doi.org/10.1039/C9MT00273A
Yan L, Sun P, Xu Y, Zhang S, Wei W, Zhao J (2018) Integration of a gold-specific whole E. coli cell sensing and adsorption based on bioBrick. Int J mol Sci 19:3741. doi: 10.3390/ijms19123741
Yang J, Liu R, Song W, Yang Y, Cui F, Qiao C (2012) Construction of a genetically engineered microorganism that simultaneously degrades organochlorine and organophosphate pesticides. Appl Biochem Biotechnol 166:590-598. doi: 10.1007/s12010-011-9450-5
Yang K, Peretz-Soroka H, Liu Y, Lin F (2016) Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab on a Chip 16:943-58
Yadav K, Ali S A, Mohanty A K, Muthusamy E, Subaharan K, Kaul, G (2021) MSN, MWCNT and ZnO nanoparticle-induced CHO-K1 cell polarisation is linked to cytoskeleton ablation. Journal of Nanobiotechnology, 19(1), 1-24.
Yoon Y, Kang Y, Chae Y, Kim S, Lee Y, Jeong W, An J (2016) Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters. Environ Sci Pollut Res 23:2353-2361. doi: 10.1007/s11356-015-5457-8
Yu S, Qin W, Zhuang G, Zhang X, Chen G, Liu W (2009) Monitoring oxidative stress and DNA damage induced by heavy metals in yeast expressing a redox-sensitive green fluorescent protein. Curr Microbiol 58:504-510. doi: 10.1007/s00284-008-9354-y
Zhang, L., Peritz, A. and Meggers, E., 2005. A simple glycol nucleic acid. Journal of the American Chemical Society, 127(12), pp.4174-4175.