1. Zohary, D., Hopf, M. & Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin. (Oxford University Press, 2012).
2. Malysheva-Otto, L. V, Ganal, M. W. & Röder, M. S. Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). (2006) doi:10.1186/1471-2156-7-6.
3. von Bothmer, R., van Hintum, T., H., K. & Sato, K. Diversity in Barley (Hordeum vulgare), Volume 7–1st Edition. (2003).
4. Morrell, P. L. & Clegg, M. T. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc. Natl. Acad. Sci. U. S. A.104, 3289–3294 (2007).
5. Khush, G. S. Green revolution: The way forward. Nature Reviews Genetics vol. 2 815–822 (2001).
6. Hedden, P. The genes of the Green Revolution. Trends Genet.19, 5–9 (2003).
7. Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun.3, 1–7 (2012).
8. Tilman, D. The greening of the green revolution. Nature vol. 396 211–212 (1998).
9. Willer, H., Yussefi-Menzler, M. & Sorensen, N. The world of organic agriculture: Statistics and emerging trends 2008. The World of Organic Agriculture: Statistics and Emerging Trends 2008 (2008). doi:10.4324/9781849775991.
10. Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nature plants (2016) doi:10.1038/nplants.2015.221.
11. Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS One8, 66428 (2013).
12. Shelton, A. C. & Tracy, W. F. Participatory plant breeding and organic agriculture: A synergistic model for organic variety development in the United States. Elem. Sci. Anthr.4, 000143 (2016).
13. Murphy, K. M., Campbell, K. G., Lyon, S. R. & Jones, S. S. Evidence of varietal adaptation to organic farming systems. F. Crop. Res.102, 172–177 (2007).
14. Le Campion, A., Oury, F. X., Heumez, E. & Rolland, B. Conventional versus organic farming systems: dissecting comparisons to improve cereal organic breeding strategies. Organic Agriculture vol. 10 63–74 (2020).
15. Nevo, E. Genetic diversity in wild cereals: Regional and local studies and their bearing on conservation ex situ and in situ. Genet. Resour. Crop Evol.45, 355–370 (1998).
16. Watt, C., Zhou, G., McFawn, L. A., Chalmers, K. J. & Li, C. Fine mapping of qGL5H, a major grain length locus in barley (Hordeum vulgare L.). Theor. Appl. Genet.132, 883–893 (2019).
17. Marzec, M. & Alqudah, A. M. Key hormonal components regulate agronomically important traits in barley. Int. J. Mol. Sci.19, 1–12 (2018).
18. Reinert, S., Kortz, A., Léon, J. & Naz, A. A. Genome-wide association mapping in the global diversity set reveals new QTL controlling root system and related shoot variation in barley. Front. Plant Sci.7, (2016).
19. Oyiga, B. C. et al. Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. Plant Cell Environ.43, 692–711 (2020).
20. Guan, J. C. et al. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol.160, 1303–1317 (2012).
21. Xu, Y. et al. Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol.17, 1–10 (2017).
22. Komatsuda, T., Maxim, P., Senthil, N. & Mano, Y. High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor. Appl. Genet.109, 986–995 (2004).
23. Valueva, T. A. & Mosolov, V. V. Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochemistry (Moscow) vol. 69 1305–1309 (2004).
24. DeYoung, B. J. & Innes, R. W. Plant NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology vol. 7 1243–1249 (2006).
25. Lin, Z. J. D., Liebrand, T. W. H., Yadeta, K. A. & Coaker, G. PBL13 is a serine/threonine protein kinase that negatively regulates arabidopsis immune responses. Plant Physiol.169, 2950–2962 (2015).
26. Goff, K. E. & Ramonell, K. M. The role and regulation of receptor-like kinases in plant defense. Gene Regul. Syst. Bio.1, 167–75 (2007).
27. Talamè, V., Ozturk, N. Z., Bohnert, H. J. & Tuberosa, R. Barley transcript profiles under dehydration shock and drought stress treatments: A comparative analysis. in Journal of Experimental Botany vol. 58 229–240 (Oxford Academic, 2007).
28. Marè, C. et al. Hv-WRKY38: A new transcription factor involved in cold- and drought-response in barley. Plant Mol. Biol.55, 399–416 (2004).
29. Al Abdallat, A. M., Ayad, J. Y., Abu Elenein, J. M., Al Ajlouni, Z. & Harwood, W. A. Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Mol. Breed.33, 401–414 (2014).
30. Alexander, R. D., Wendelboe-Nelson, C. & Morris, P. C. The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. Plant Physiol. Biochem.142, 246–253 (2019).
31. Qin, T., Zhao, H., Cui, P., Albesher, N. & Xionga, L. A nucleus-localized long non-coding rna enhances drought and salt stress tolerance. Plant Physiol.175, 1321–1336 (2017).
32. Xue, G. P. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J.33, 373–383 (2003).
33. Abe, H. et al. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell9, 1859–1868 (1997).
34. Moran, J. F. et al. Drought induces oxidative stress in pea plants. Planta194, 346–352 (1994).
35. Yang, Z., Wu, Y., Li, Y., Ling, H. Q. & Chu, C. OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol. Biol.70, 219–229 (2009).
36. Tilk, S. et al. Accurate allele frequencies from ultra-low coverage Pool-seq samples in evolve-and-resequence experiments. G3 Genes, Genomes, Genet.9, 4159–4168 (2019).
37. Schlötterer, C., Tobler, R., Kofler, R. & Nolte, V. Sequencing pools of individuals-mining genome-wide polymorphism data without big funding. Nat. Rev. Genet.15, 749–763 (2014).
38. Gautier, M. et al. Estimation of population allele frequencies from next-generation sequencing data: Pool-versus individual-based genotyping. Mol. Ecol.22, 3766–3779 (2013).
39. Burke, M. K. et al. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature467, 587–590 (2010).
40. Turner, T. L., Bourne, E. C., Von Wettberg, E. J., Hu, T. T. & Nuzhdin, S. V. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat. Genet.42, 260–263 (2010).
41. Naz, A. A., Arifuzzaman, M., Muzammil, S., Pillen, K. & Léon, J. Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet.15, 1–12 (2014).
42. Honsdorf, N., March, T. J., Berger, B., Tester, M. & Pillen, K. High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One9, (2014).
43. Honsdorf, N., March, T. J. & Pillen, K. QTL controlling grain filling under terminal drought stress in a set of wild barley introgression lines. PLoS One12, (2017).
44. Sayed, M. A., Schumann, H., Pillen, K., Naz, A. A. & Léon, J. AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet.13, 1–12 (2012).
45. Zahn, S., Koblenz, B., Christen, O., Pillen, K. & Maurer, A. Evaluation of wild barley introgression lines for agronomic traits related to nitrogen fertilization. Euphytica216, 1–14 (2020).
46. Schmalenbach, I., March, T. J., Pillen, K., Bringezu, T. & Waugh, R. High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the illumina goldengate assay. G3 Genes, Genomes, Genet.1, 187–196 (2011).
47. Wang, G. et al. Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor. Appl. Genet.120, 1559–1574 (2010).
48. Dragan, P. et al. Genetic Fine Mapping of a Novel Leaf Rust Resistance Gene and a Barley Yellow Dwarf Virus Tolerance (BYDV) Introgressed from Hordeum bulbosum by the Use of the 9K iSelect Chip. in Advance in Barley Sciences 269–284 (Springer Netherlands, 2013). doi:10.1007/978-94-007-4682-4_23.
49. Von Korff, M., Wang, H., Léon, J. & Pillen, K. AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor. Appl. Genet.111, 583–590 (2005).
50. Schmalenbach, I., Körber, N. & Pillen, K. Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor. Appl. Genet.117, 1093–1106 (2008).
51. Hanson, W. D. Early Generation Analysis of Lengths of Heterozygous Chromosome Segments around a Locus Held Heterozygous with Backcrossing or Selfing. Genetics44, 833–837 (1959).
52. Teuscher, F., Guiard, V., Rudolph, P. E. & Brockmann, G. A. The map expansion obtained with recombinant inbred strains and intermated recombinant inbred populations for finite generation designs. Genetics170, 875–879 (2005).
53. Wright, S. Evolution in mendelian populations. Bull. Math. Biol.52, 241–295 (1990).
54. Qu, J., Kachman, S. D., Garrick, D., Fernando, R. L. & Cheng, H. Exact distribution of linkage disequilibrium in the presence of mutation, selection, or minor allele frequency filtering. Front. Genet.11, 1–10 (2020).
55. Bejarano, D. et al. Linkage disequilibrium levels and allele frequency distribution in blanco orejinegro and romosinuano creole cattle using medium density snp chip data. Genet. Mol. Biol.41, 426–433 (2018).
56. Allard, R. W. Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J. Hered.79, 225–238 (1988).
57. Cox, T. S. Expectations of means and genetic variances in backcross populations. Theor. Appl. Genet.68, 35–41 (1984).
58. Pourkheirandish, M. & Komatsuda, T. The importance of barley genetics and domestication in a global perspective. Annals of Botany vol. 100 999–1008 (2007).
59. Comadran, J. et al. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat. Genet.44, 1388–1391 (2012).