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Abstract
Background and aim Histiocellular carcinoma (HCC) ranks second in the world's most deadly diseases,
with a high mortality rate. Unlike apoptosis, necroptosis causes the release of molecular factors that elicit
an immune response. As of yet, it has not been fully investigated how necroptotic machinery interacts
with tumor-in�ltrating lymphocytes in HCC .

Methods  374 patients and 50 healthy controls were analyzed using TCGA gene expression pro�les, long
noncoding RNA data and clinical characteristics. By analyzing lncRNA-seq data from 374 patients with
HCC, an investigation of the relationships between necroptosis-related genes and tumor-in�ltrating cells
was conducted. A two-step multivariate Cox model and an univariate Cox model were analyzed to predict
the prognosis . Nomograms were generated by combining necroptosis-related gene signatures with
clinical characteristics. An analysis of HCC for PD-L1 was examined along with tumor-in�ltrating immune
cells .

Results  Necroptosis-related pathways were enriched in lncRNA expression pro�les in HCC tissues. The
gene signature associated with necroptosis signi�cantly reduced the survival rate of high-risk patients .
The necroptosis-related gene signature demonstrated a high degree of predictive ability for OS (AUC=
0.781). Low-risk subgroups had signi�cantly fewer aDCs, macrophages, and Treg cells than high-risk
subgroups. In addition, scores indicating risk were positively correlated with uncharacterized cells, cancer
associated �broblast, monocyte, Macrophage/Monocyte and T cell regulatory (Tregs).

Conclusions These results revealed that the immunogenetic role of necroptosis may be in�uential in HCC
prognosis. Exploring new possibilities for diagnostics and immunotherapy, the immune environment
which was associated with necroptotic signatures needs to be assessed further based on its speci�c
composition and functional characteristics.

INTRODUCTION
Hepatocellular carcinoma (HCC) is a type of liver cancer that originates from liver cells[1]. According to
statistics, hepatocellular carcinoma is the second leading cause of cancer-related death in humans.
Cirrhotic liver is responsible for approximately 80% of HCCs, which are caused by chronic viral infection,
alcohol abuse, a�atoxin exposure, and metabolic or autonomic dysfunction[2]. A gold-standard treatment
for HCC is surgery, radiation, or, sometimes, chemotherapy, depending on the stage of the cancer. There is
a limited effectiveness of liver transplants, and the recurrence and survival rates are low[3]. Moreover, the
clinical outcome of HCC varies according to the systemic stage, nodes, and metastases (TNM)[4], and
there is no effective prognostic marker available as of yet. 

Tumor aggressiveness refers to the rate at which a cancerous tumor grows and spreads to other parts of
the body. Aggressiveness is an important factor in determining the prognosis and treatment options for a
patient with cancer. The tumor microenvironment(TME) refers to the complex network of cellular and
molecular interactions that exist within the vicinity of a tumor. It has been well established that several
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factors contribute to the aggressiveness of tumors, including TME [5], yet little is known about the
network that underlies this phenomenon. According to the characteristics of T cell in�ltration, we
strati�ed the patient's phenotype, prognosis and treatment choice. As part of the standard TNM staging
system, monocyte, Macrophage/Monocyte and T cell regulatory cells have already been shown to have a
prognostic role[6], but intrinsic features of the TME have not been studied in depth[7].

TME ecosystems are known to be greatly impacted by programmed cell death. The most common ways
in which transformed hepatocytes die are apoptosis and necroptosis[8]. Necroptosis is a form of
programmed cell death that is distinct from apoptosis[9]. Unlike apoptosis, which is characterized by the
orderly breakdown of the cell, necroptosis is a more chaotic process in which the cell membrane becomes
permeable and releases its contents into the surrounding tissue. This leads to in�ammation and tissue
damage. Necroptosis is activated by a variety of signals, including oxidative stress, viral infections, and
exposure to certain drugs. The process is controlled by a group of proteins known as receptor-interacting
proteins (RIPs), which activate an enzyme called mixed lineage kinase domain-like protein (MLKL). Then
MLKL permeates the cell membrane, leading to necrosis. A variety of diseases are believed to be caused
by necroptosis, including neurodegenerative diseases, cancers , and in�ammatory diseases[10]. Its exact
role in these diseases is not yet fully understood, and further research is required to fully understand
necroptosis and its impact on health. 

Necroptosis is in�uenced by long non-coding RNAs (lncRNAs) in various cancers, including HCC [11]. Our
understanding of HCC can be improved by using lncRNA signatures to identify necroptosis and to
develop new therapeutics . Further research is needed to fully understand the role of lncRNAs in HCC and
the speci�c lncRNA signatures associated with necroptosis[12]. Nevertheless, no study has examined
whether necrosis-related lncRNAs can be used to predict outcomes in HCC[13].As a solution to this
problem, we discussed the effect of lymphocyte microenvironment on HCC. An analysis of lncRNA-Seq
data from The Cancer Genome Atlas (TCGA) was conducted to examine the relationship between
necroptosis genes and immune in�ltration . TCGA data and clinical characteristics were downloaded and
lncRNA data related to necroptosis was extracted. After constructing a lncRNA prognosis signature with
Lasso-Cox regression analysis, the prognosis ability of the signature was tested using  GEO cohorts.

MATERIALS AND METHODS
Datasets and Pre-Processing   

Figure 1 illustrates the analysis �ow chart .As part of the TCGA ( https://portal.gdc.cancer.gov/ ), patients
with HCC were enrolled and their lncRNA expression was assessed . We have analyzed the expression of
lncRNAs in 50 normal individuals and 374 samples of tumors from the TCGA (Table 1). Taking into
account previous research ,we identi�ed 67 genes related to necrosis [14], including FADD, FAS, FASLG,
MLKL, RIPK1, RIPK3, TLR3, TNF, TSC1, TRIM11, CASP8, ZBP1, MAPK8, IPMK, ITPK1, SIRT3, MYC,
TNFRSF1A, TNFSF10, TNFRSF 1B, TRAF2, PANX1, OTULIN, CYLD, USP22, MAP3K7, SQSTM1, STAT3,
DIABLO, DNMT1, CFLAR, BRAF AXL, ID1, CDKN2A, HSPA4, BCL2, STUB1, FLT3, HAT1, SIRT2, SIRT1, PLK1,
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MPG BACH2, GATA3, MYCN, ALK, ATRX, TERT, SLC39A7, SPATA2, RNF31, IDH1, IDH2, KLF9, HDAC9,
HSP90AA1, LEF1, BNIP3, CD40, BCL2L11, EGFR, DDX58, TARDBP, APP and TNFRSF21. 

Differing expressions identi�ed

According to RNA-seq (logFPKM+1 format) data, we performed Pearson correlation analysis on lncRNA
and genetic markers related to necrosis (| cor |>0.15, p<0.05). Based on the TCGA cohort, a network of
necroptosis-related genes as well as their prognostic values was created using the "igraph" package.
Identifying genes that express differentially ( DEGs ) between nontumors and tumors, lncRNA from the
TCGA was analyzed. Prior to comparing the expression data, we normalized the values to fragments per
million (FPKM) . With the R software package "limma" the DEGs were identi�ed. 

On the basis of the expression of necroptotic regulators, Data was clustered unsupervised by consensus
to identify necroptosis-related patterns for speci�c patients . For assessing the number and stability of
clusters, the "ConsensuClusterPlus" package was used. To compare clusters, we used the limma package
in R with a false discovery rate (FDR) of 0.05 and fold change absolute value >1.5 as criteria. 

Functional Enrichment Analysis  

For searching comprehensive information about large-scale genetic datasets, enrichment analysis was
commonly used in bioinformatics. KEGG pathway enrichment analysis helped understand biological
mechanisms. Our calculation was based on the gene set enrichment analysis algorithm (GSEA). GSEA
(http://www.gsea-msigdb.org/gsea/index.jsp) offered statistical analysis with a 0.05 p value and 0.05
FDR . Benjamin Hochberg (BH) was applied to the p-values. A normalized enrichment score (NES) was
calculated by permuting gene sets 1000 times for each analysis.

Developing and validating a prognostic model for necroptosis

According to the 1:1 ratio, 374 HCC patients were divided into training and validation sets using R . As a
result of the training set analysis, the characteristics of the training set were �ltered , and a model for
analyzing risk was established using Minimum Absolute Selected Operator  (LASSO) - Cox regression.
LncRNAs related to survival were identi�ed with a cutoff p value of 0.2 . The lncRNA's prognostic value
was evaluated using Cox regression analysis. Based on univariate analysis, the Cox proportional risk
model screened lncRNAs that were signi�cantly related to the batch-adjusted survival rate ( p<0.05 ). We
constructed a LASSO regression risk model based on ten fold cross-validation in order to avoid over�tting
.

Establishment and validation of the nomogram 

An easy-to-use nomogram has been developed for visualizing Cox model results for clinical purposes.
Prognostic factors were identi�ed through univariate as well as multivariate Cox analyses, after that, a
Cox proportional hazard model was developed. On the basis of a Cox model constructed from validation
cohorts, the total points of patients were calculated. Based on median risk scores, we divided the training
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queue into high and low risk groups. Following this, calibration curves and concordance indices (C
indices) were calculated. Also, we performed a decision curve analysis ( DCA ) and plotted the time-
dependent receiver operating characteristic (ROC) curve. Based on age, sex, tumor stage, and risk score,
we predicted the survival rates of HCC patients after 1, 3, and 5 years .

Next, to make the model more convincing, The nomogram reliability was tested in the Gene Expression
Omnibus (GEO) cohorts (https://www.ncbi.nlm.nih.gov/gds/). Similarly, by dividing the TCGA cohort's
median value we were able to calculate GEO's risk scores .

Quanti�cation of Immune Cell In�ltration  

First, immune in�ltration was correlated with prognosis risk signature  using XCELL, EPIC, TIMER,
QUANTISEQ, MCPCOUNTER, and CIBERSORT-ABS[15]. Then, to assess immune function and in�ltrating
cells in different subgroups, GSVA was used with the ssGSEA package in R. Finally, Using ESTIMATE,
immunescores were calculated for each patient for comparison of high- and low-risk TME. 

Database Expression for PD-L1 

Blocking the PD-L1/PD-1 axis has demonstrated clinical bene�ts . Due to improved insight into the
underlying regulatory mechanisms, immune checkpoint blockade has proven clinically bene�cial .

Analyses of statistical data 

The statistical analyses were carried out using R software (version 4.2.2) and IBM SPSS 26.0. The two-
tailed p<0.05 resulted in signi�cant outcome in all tests. To compare categorical variables, the chi-square
test was used. To determine whether nontumor tissues and tumor tissues had similar levels of immune
cell in�ltration and activation, we used the Mann-Whitney U test. Prognostic signature coe�cients were
calculated using LASSO regression. A log-rank test was used to compare survival rates between
subgroups. Using the Pearson test, we calculated the correlation. Models of Cox regression were used to
assess risk factors for both univariate and multivariate analyses. The area under curves (AUCs) were
calculated , and survival ROC curves were generated for 5-year OS, 3-year OS, and 1-year OS by "survival"
packages. Dimensionality reduction was achieved through principal component analysis (PCA).

RESULTS
In total, 424 HCC patients were enrolled into the TCGA cohort and 95 HCC patients were enrolled into the
GEO cohort. Figure 1 presents a �ow chart of this study's overview. Clinical data are resumed in Table 1.
The data of the study is public, so there is no need for ethical approval and informed consent.

Detection of DEGs in tumors versus non-tumors 

We plotted a network using prognostic values from the TCGA cohort, along with necroptosis-related
genes. The correlation network can be seen in Figure 2A, and heatmap is shown in Figure 2B. Genes
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differentially expressed on the volcano plot in Figure 2C.

Signature construction for risk 

A LASSO regression analysis was performed and NRLs screened to avoid over�tting (Figure 3A,B). Then,
we conduct risk strati�cation through multiple Cox regression analysis (ENTER method) . As a follow-up,
we conducted a Cox regression analysis to identify whether the risk score differed from other prognostic
factors, which was shown in Figure 3C. The correlation between NRG and lncRNA can be seen in Figure
3D.

Analysis of risk groups' differential functional enrichment 

We used GSEA to identify major enrichment pathways. According to the results of KEGG analysis, �ve
most enriched pathways were selected, including cell metabolism, drug metabolism and drug sensitivity,
including the metabolism of cytochrome P450 to xenobiotics, drug metabolism - cytochrome P45, retinol
metabolism, bile secretion and chemical carcinogenesis - DNA adducts (Fig. 3E).

Obtaining a risk signature for validation 

As shown by the Kaplan-Meier curve in the TCGA queue, there was a signi�cant difference between the
high-risk and low-risk groups regarding OS ( p < 0.001) (Figure 4A). In the training cohorts, high-risk
patients had a signi�cantly lower OS than low-risk patients ( p < 0.001) (Figure 4B). In the testing cohorts,
OS was signi�cantly different between high-risk and low-risk patients ( p = 0.006) (Figure 4C). In addition,
the heatmap, high-risk and low-risk group risk scores and survival status  in the TCGA cohorts, the testing
cohorts and the training cohorts were shown in Figure 4D,E,F, G,H,I,J,K, L. 

A lncRNA-based clustering analysis of HCC patients 

In order to further study, on the basis of NMF algorithm, we divided TCGA patients into subtypes. We
used cluster correlation coe�cient analysis, and �nally decided that k=2 was the best number of nodes
(Figure 5A).(Figure 5A). Applying NMF that is consistent, two clusters were de�ned, C1 (n = 221) and C2
(n = 122). In the PCA analysis, the two clusters were clearly distinguished from one another in their two-
dimensional distribution maps (Figure 5B,5C). The result in cluster 1 was higher than that in cluster 2( p =
0.001, Figure 5D ). Furthermore, high-risk HCC patients had a lower survival rate ( p<0.001 )
(Figure 5E). The correlation between cluster and risk can be seen in Figure 5F.

Construction and validation of nomograms 

According to both univariate and multivariate Cox regressions in the TCGA, tumor stage and signature
correlated signi�cantly (Figures 6A ,B). Based on the K-M survival analysis, high-stage groups had a
relatively worse prognosis than  low-stage groups (Figures 6C,D). At 1 year, 3 year, and 5 year, the AUCs
were 0.781, 0.663, and 0.686, respectively (Figure 6E), and the AUCs of risk, stage, gender, age and grade
were 0.781, 0.712, 0.508, 0.492 and 0.489, respectively (Figure 6F). 
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According to the risk score and TNM stage, we built a nomograph to visualize the risk characteristics
(Figure 7A). For 1-year, 3-year, and 5-year OS predictions, we further veri�ed the nomogram's accuracy
using the TCGA calibration curve . According to Figures 7C, based on the prediction curves, the
nomogram can predict patients' overall survival quite accurately. Further, a DCA curve showed the
nomogram to be highly reliable for each individual parameter  (Figure 7D). Using 95 samples from the
GEO cohort, we constructed a nomogram for external validation (Figure 7B).

Assessment of the immune microenvironment of Hepatocellular Carcinoma

In the two subgroups, no signi�cant differences were observed in B cells, CD8+T cells, neutrophils, DC, T-
helper cells, Th2 cells and TIL. As a result, the number of aDCs, macrophages, and Treg was signi�cantly
lower in the low-risk subgroup than in the high-risk subgroup (Figure 8A). Compared with the high-risk
group, the low-risk group had a lower level of immune pathway (Figure 8B). 

Using seven different calculation methods, Figure 8C illustrates the correlation between immune
in�ltrating cells and the associated risk characteristics .We further analyzed and found that the risk score
was negatively correlated with unidenti�ed cells, NK cells, plasmacyte-like dendritic cells, endothelial cells,
hematopoietic cells, stem cells, T-cell CD8+naive, monocytes and mast cell-activated macrophages
(Figure 8C). A positive correlation was also found between the risk score and uncharacterized cells,
cancer-associated �broblasts, monocytes, macrophages, and T cell regulatory (Treg) cells. 

Analysis of immune checkpoints

According to our analysis of immune checkpoint expression, such as  HAVCR2 , VTCN1, CD86, ICOS,
CD276, LAIR1, TNFRSF9, TNFSF15 and PDCD1, there were signi�cant differences between the low-risk
and high-risk subgroups regarding immune checkpoints (Figure 9A). Moreover, the risk score correlated
negatively with the expression of MIR4435−2HG, BACE1−AS, AP003390.1, AL355987.4, and NRAV , but
correlated positively with PD−L1, LINC01094, AC145207.5, TMCC1−AS1, and LINC01224 (Figure 9B). 

HPA database veri�cation of PD-L1 protein expression 

As shown in Figure 10 A, normal tissue and cancer tissue express PD-L1 at signi�cantly different levels
(p < 0.001). In Figure 10B, a signi�cant difference was also found between high-risk and low-risk groups
in TCGA when it came to PD-L1 expression  (p < 0.001).

From the HPA dataset, immunohistochemical staining showed signi�cant differences in the PD-L1
expression level between normal liver tissue and cancer tissue (Figure 10C; p < 0.001)
(http://www.proteinatlas.org/) . As shown in Figure 10D, PD-L1 expression levels were higher in high-risk
HCC tissues than in low-risk tissues (p <0.001).

DISCUSSION
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Our aim was to identify a long noncoding RNA that correlates with tumor immunity microenvironment
characteristics as a prognostic marker for necroptosis in HCC. We obtained clinical data and lncRNA
expression pro�les from the TCGA database. Multivariate Cox analysis, univariate Cox analysis, and
LASSO analysis were applied to determine the necrosis-related genes in two steps. By combining
differentially expressed lncRNA signatures related to necroptosis, prognosis was predicted. High-
predictability nomogram was developed by combining the necroptosis-related lncRNAs signature with
clinical characteristics. In this study, using the TCGA cohorts involving 374 HCC patients, we performed a
comprehensive model of the lncRNA involved in the necroptotic pathway, and tested our preliminary
hypothesis using 95 HCC patients from the GEO cohorts. 

The �ndings suggest that there may be a relationship between certain immune cell populations, such as
aDCs, macrophages, and Treg cells, and the risk of disease. Speci�cally, lower levels of these immune
cells were found in the low-risk subgroup, while higher levels of uncharacterized cells, cancer associated
�broblasts, monocytes, macrophages/monocytes, and Treg cells were found in the high-risk subgroup.
The positive correlation between the risk score and these immune cell populations suggests that they
may play a role in determining disease risk. A correlation was found between PD-L1 expression and
necroptosis-related lncRNAs in HCC tissues. These relationships requireed further research to be fully
understood. The present study found signi�cantly higher levels of PD-L1 in HCC tissues in patients in
high-risk groups compared to those in low-risk groups, indicating high-risk patients may develop HCC.   

The tumor microenvironment encompasses a range of different cell types, including cancer cells, immune
cells, blood vessels, �broblasts, and extracellular matrix components. These interactions play a crucial
role in shaping the behavior and progression of tumors, both by promoting tumor growth and by
regulating the immune response to the cancer cells. Studies have shown that the tumor
microenvironment has an in�uence on the development and spread of cancer, including tumor
angiogenesis, invasion and immune escape. Understanding the complex interactions within the tumor
microenvironment is an important area of research, as it can provide new insights into cancer diagnosis
and treatment .

Researchers previously reported that long coding RNAs play a role in the immune evasion of HCC [16]. In
line with this, the results of this study showed that there was a signi�cant difference between high-risk
tumors and low-risk tumors. The immune characteristics were activated with the increase of risk score,
and the proportion of Tregs increased accordingly. In view of these data, we believed Tregs may
contribute to the microenvironment of HCC tumors [17], and immunotherapy may be bene�cial for
patients with a low risk score .

Immune checkpoint molecules are proteins that regulate the immune system's response to foreign
invaders such as cancer cells. These molecules act as "checkpoints" that determine whether the immune
system should attack a particular target. In normal circumstances, immune checkpoint molecules prevent
the immune system from attacking healthy cells and tissues, but some cancers can take advantage of
these checkpoints to evade the immune system's response.
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Targeting immune checkpoint molecules has emerged as a promising strategy for cancer therapy. By
blocking the activity of these checkpoints, researchers aim to restore the immune system's ability to
detect and attack cancer cells. Some of the most well-known immune checkpoint molecules include
CTLA-4, PD-1, and PD-L1. Drugs that target these checkpoints, such as ipilimumab, nivolumab, and
pembrolizumab, have been approved for the treatment of several types of cancer, including melanoma,
lung cancer, and renal cell carcinoma.

Through immune editing, tumor cells can avoid immune recognition[18]. PD-L1 (programmed cell death
ligand 1) is an immune checkpoint molecule that can be modi�ed during immunity editing[19]. The
interaction between PD-1 and PD-L1, found on tumor cells, prevents the immune system from destroying
cancer cells by activating and expanding T cells [20]. PD-L1/PD-1 immune checkpoint blockades have
shown clinical bene�ts[21]. Since the tumor microenvironment is immunosuppressive, these treatments
are not effective for most patients  [22]. As a consequence, anti-PD-1/PD-L1 treatments must improve
their e�cacy by understanding the molecular mechanisms underlying PD-L1 regulation [23] . 

There were limitations to this study .First of all, our research on the data extracted from the TCGA
database belonged to retrospective analysis[24]. In addition, using gene knockout hepatoma models, we
will study the effects of lncRNAs associated with necroptosis on tumor progression and immunotherapy
e�cacy [25]. Multiple centers should be involved in large-scale, prospective research in the future .

Conclusions
Therefore, we conclude that lncRNA has immunogenetic properties  in human HCC. Considering these
factors, it is very important for us to conduct more research in the future to better evaluate their
composition, function and evolutionary characteristics, as well as possible checkpoints for the immune
environment related to the characteristics of necrosis, so as to explore new therapeutic possibilities.
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Tables
TABLE 1   Clinical features of TCGA
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Variables Count Percentage (%)

Age (mean±SD) 59.45 ±13.34  

Status    

Alive 267 63.88

Dead 151 36.12

Gender    

Male 272 65.07

Female 146 34.93

Pathological stage    

Stage I 194 46.41

Stage II 98 23.44

Stage III 7 1.67

Stage IIIA 65 15.55

Stage IIIB 9 2.15

Stage IIIC 9 2.15

Stage IV 3 0.72

Stage IVA 4 0.96

Stage IVB 5 1.2

Unknown 24 5.74

T staging    

T1 204 48.80

T2 98 23.44

T2a 5 1.2

T2b 4 0.96

T3 54 12.92

T3a 29 6.94

T3b 7 1.67

T4 14 3.35

TX 1 0.24
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Unknown 2 0.48

M staging    

    M0 303 72.49

M1 8 1.91

MX 107 25.60

N staging    

N0 290 69.38

N1 8 1.91

NX 119 28.47

Unknown 1 0.24

Grade    

G1 55 13.16

G2 180 43.06

G3 124 29.67

G4 13 3.11

Unknown 46 11.00

Figures
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Figure 1

Study’s roadmap
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Figure 2

Identi�cation of lncRNAs:

(A) The correlation network

(B) heatmap
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(C) Volcano map

Figure 3

Construction of the lncRNA signature:

(A) LASSO was used in the 10-fold cross-validation.
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(B) Optimized lambda coe�cient pro�les for LASSO

(C) Plot of forest for univariate results

(D) Sankey diagram depicting the associations between NRG and lncRNA

(E) GSEA of the �rst �ve routes
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Figure 4

TCGA prognostic signature evaluation

(A) TCGA OS curves showing high versus low risk

(B) OS curves showing the association between high and low risk in training

(C) OS curves showing the association between high and low risk in testing

(D) A heatmap from the TCGA

(E)Risk score distribution

(F) TCGA OS status

(G) Heatmap in the training set

(H) Risk scores for training sets

(I) Training set OS status

(J) Heatmap in the testing set

(K) Risk scores for testing sets

(L) testing set OS status
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Figure 5

Different subtypes identi��ed by risk signature

(A)  Using the clustering algorithm, the TCGA was divided into two clusters

(B) A risk PCA



Page 21/27

(C)  Cluster PCA

(D)  Observations on OS in two clusters based on Kaplan-Meier survival curves

(E) Survival curves for high and low risk groups according to Kaplan-Meier

(F) Sankey diagram depicting the associations between cluster and risk
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Figure 6

Evaluation of prognostic characteristics

(A) Univariate analysis of TCGA

(B) Multivariate analysis of TCGA

(C) Comparison of survival rates in groups of high grades and low grades using the Kaplan-Meier method

(D) Comparison of survival rates in groups of high grades and low stage using the Kaplan-Meier method

(E) ROC curve in TCGA queue. 1. The AUC of OS in 3 and 5 years is 0.781, 0.663 and 0.686 respectively

(F) ROC curve in TCGA queue. The AUC of risk, stage, gender, age and grade are 0.781, 0.712, 0.508, 0.492
and 0.489 respectively



Page 23/27

Figure 7

Prediction of OS using nomograms

(A) Clinical and OS signature nomograms for HCC in the TCGA

(B) Clinical and OS signature nomograms for HCC in the GEO
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(C) Nomogram calibration curve for assessing OS prediction reliability

(D) DCA curve showing the signature's clinical utility

Figure 8

Evaluation of tumor immune microenvironment
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(A) Immunocyte box diagram

(B) Block diagram of biological pathways

(C) Heat map of immune cell in�ltration based on CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL,
MCPCOUNTER, EPIC and TIMER algorithms

* p<0.05 ** p<0.01 *** p<0.001
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Figure 9

Analysis of immune checkpoints

(A) Expression of immune checkpoint between two subgroups

(B) correlation analysis among immune checkpoints
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Figure 10

PD-L1 protein expression

(A) PD−L1 expression between Normal and Tumor

(B) PD−L1 expression between high-risk and low-risk group

(C) Normal tissues derived from the HPA database

(D) Tumor tissues derived from the HPA database


