1 Damien, J., Colloca, L., Bellei-Rodriguez, C. E. & Marchand, S. Pain Modulation: From Conditioned Pain Modulation to Placebo and Nocebo Effects in Experimental and Clinical Pain. Int Rev Neurobiol 139, 255-296, doi:10.1016/bs.irn.2018.07.024 (2018).
2 Yarnitsky, D. Role of endogenous pain modulation in chronic pain mechanisms and treatment. Pain 156 Suppl 1, S24-31, doi:10.1097/01.j.pain.0000460343.46847.58 (2015).
3 Edwards, R. R., Ness, T. J., Weigent, D. A. & Fillingim, R. B. Individual differences in diffuse noxious inhibitory controls (DNIC): association with clinical variables. Pain 106, 427-437 (2003).
4 Daenen, L. et al. Dysfunctional pain inhibition in patients with chronic whiplash-associated disorders: an experimental study. Clin Rheumatol 32, 23-31, doi:10.1007/s10067-012-2085-2 (2013).
5 Lewis, G. N., Rice, D. A. & McNair, P. J. Conditioned pain modulation in populations with chronic pain: a systematic review and meta-analysis. J Pain 13, 936-944, doi:10.1016/j.jpain.2012.07.005 (2012).
6 Grosen, K., Vase, L., Pilegaard, H. K., Pfeiffer-Jensen, M. & Drewes, A. M. Conditioned pain modulation and situational pain catastrophizing as preoperative predictors of pain following chest wall surgery: a prospective observational cohort study. PLoS One 9, e90185, doi:10.1371/journal.pone.0090185 (2014).
7 Petersen, K. K., Graven-Nielsen, T., Simonsen, O., Laursen, M. B. & Arendt-Nielsen, L. Preoperative pain mechanisms assessed by cuff algometry are associated with chronic postoperative pain relief after total knee replacement. Pain 157, 1400-1406, doi:10.1097/j.pain.0000000000000531 (2016).
8 Yarnitsky, D. et al. Prediction of chronic post-operative pain: pre-operative DNIC testing identifies patients at risk. Pain 138, 22-28, doi:10.1016/j.pain.2007.10.033 (2008).
9 Bingel, U., Lorenz, J., Schoell, E., Weiller, C. & Buchel, C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120, 8-15, doi:10.1016/j.pain.2005.08.027 (2006).
10 Lorenz, J., Minoshima, S. & Casey, K. L. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126, 1079-1091, doi:10.1093/brain/awg102 (2003).
11 Ohara, P. T., Vit, J. P. & Jasmin, L. Cortical modulation of pain. Cell Mol Life Sci 62, 44-52, doi:10.1007/s00018-004-4283-9 (2005).
12 Petrovic, P. & Ingvar, M. Imaging cognitive modulation of pain processing. Pain 95, 1-5 (2002).
13 Bogdanov, V. B. et al. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects. Behav Brain Res 281, 187-198, doi:10.1016/j.bbr.2014.11.028 (2015).
14 Moont, R., Crispel, Y., Lev, R., Pud, D. & Yarnitsky, D. Temporal changes in cortical activation during conditioned pain modulation (CPM), a LORETA study. Pain 152, 1469-1477, doi:10.1016/j.pain.2011.01.036 (2011).
15 Youssef, A. M., Macefield, V. G. & Henderson, L. A. Pain inhibits pain; human brainstem mechanisms. Neuroimage 124, 54-62, doi:10.1016/j.neuroimage.2015.08.060 (2016).
16 Cadden, S. W., Villanueva, L., Chitour, D. & Le Bars, D. Depression of activities of dorsal horn convergent neurones by propriospinal mechanisms triggered by noxious inputs; comparison with diffuse noxious inhibitory controls (DNIC). Brain Res 275, 1-11, doi:10.1016/0006-8993(83)90412-2 (1983).
17 Le Bars, D., Dickenson, A. H. & Besson, J. M. Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 6, 283-304 (1979).
18 Cadden, S. W. & Newton, J. P. The effects of inhibitory controls triggered by heterotopic noxious stimuli on a jaw reflex evoked by perioral stimuli in man. Arch Oral Biol 39, 473-480 (1994).
19 Edwards, R. R., Fillingim, R. B. & Ness, T. J. Age-related differences in endogenous pain modulation: a comparison of diffuse noxious inhibitory controls in healthy older and younger adults. Pain 101, 155-165 (2003).
20 Eitner, L. et al. Conditioned pain modulation using painful cutaneous electrical stimulation or simply habituation? Eur J Pain 22, 1281-1290, doi:10.1002/ejp.1215 (2018).
21 Granot, M. et al. Determinants of endogenous analgesia magnitude in a diffuse noxious inhibitory control (DNIC) paradigm: do conditioning stimulus painfulness, gender and personality variables matter? Pain 136, 142-149, doi:10.1016/j.pain.2007.06.029 (2008).
22 Pud, D., Granovsky, Y. & Yarnitsky, D. The methodology of experimentally induced diffuse noxious inhibitory control (DNIC)-like effect in humans. Pain 144, 16-19, doi:10.1016/j.pain.2009.02.015 (2009).
23 Pud, D., Sprecher, E. & Yarnitsky, D. Homotopic and heterotopic effects of endogenous analgesia in healthy volunteers. Neurosci Lett 380, 209-213, doi:10.1016/j.neulet.2005.01.037 (2005).
24 Staud, R., Robinson, M. E., Vierck, C. J., Jr. & Price, D. D. Diffuse noxious inhibitory controls (DNIC) attenuate temporal summation of second pain in normal males but not in normal females or fibromyalgia patients. Pain 101, 167-174, doi:10.1016/s0304-3959(02)00325-1 (2003).
25 Lautenbacher, S., Prager, M. & Rollman, G. B. Pain additivity, diffuse noxious inhibitory controls, and attention: a functional measurement analysis. Somatosens Mot Res 24, 189-201, doi:10.1080/08990220701637638 (2007).
26 Vaegter, H. B., Fehrmann, E., Gajsar, H. & Kreddig, N. Endogenous Modulation of Pain: The Role of Exercise, Stress, and Cognitions in Humans. Clin J Pain 36, 150-161, doi:10.1097/AJP.0000000000000788 (2020).
27 Volz, M. S., Suarez-Contreras, V., Portilla, A. L. & Fregni, F. Mental imagery-induced attention modulates pain perception and cortical excitability. BMC Neurosci 16, 15, doi:10.1186/s12868-015-0146-6 (2015).
28 Villemure, C. & Bushnell, M. C. Cognitive modulation of pain: how do attention and emotion influence pain processing? Pain 95, 195-199 (2002).
29 Calcaterra, V. et al. Music benefits on postoperative distress and pain in pediatric day care surgery. Pediatr Rep 6, 5534, doi:10.4081/pr.2014.5534 (2014).
30 Good, M. et al. Pain after gynecologic surgery. Pain Manag Nurs 1, 96-104, doi:10.1053/jpmn.2000.9857 (2000).
31 Good, M. et al. Relief of postoperative pain with jaw relaxation, music and their combination. Pain 81, 163-172 (1999).
32 He, H. G. et al. Therapeutic play intervention on children's perioperative anxiety, negative emotional manifestation and postoperative pain: a randomized controlled trial. J Adv Nurs 71, 1032-1043, doi:10.1111/jan.12608 (2015).
33 Calcaterra, V. et al. Post-operative benefits of animal-assisted therapy in pediatric surgery: a randomised study. PLoS One 10, e0125813, doi:10.1371/journal.pone.0125813 (2015).
34 Kirchner, W. K. Age differences in short-term retention of rapidly changing information. J Exp Psychol 55, 352-358 (1958).
35 Lavie, N. Distracted and confused?: selective attention under load. Trends Cogn Sci 9, 75-82, doi:10.1016/j.tics.2004.12.004 (2005).
36 Lorenz, J. & Bromm, B. Event-related potential correlates of interference between cognitive performance and tonic experimental pain. Psychophysiology 34, 436-445 (1997).
37 Obermann, M. et al. Temporal summation of trigeminal pain in human anterior cingulate cortex. Neuroimage 46, 193-200, doi:10.1016/j.neuroimage.2009.01.038 (2009).
38 Moont, R., Pud, D., Sprecher, E., Sharvit, G. & Yarnitsky, D. 'Pain inhibits pain' mechanisms: Is pain modulation simply due to distraction? Pain 150, 113-120, doi:10.1016/j.pain.2010.04.009 (2010).
39 Hoffken, O., Ozgul, O. S., Enax-Krumova, E. K., Tegenthoff, M. & Maier, C. Evoked potentials after painful cutaneous electrical stimulation depict pain relief during a conditioned pain modulation. BMC Neurol 17, 167, doi:10.1186/s12883-017-0946-7 (2017).
40 Buhle, J. & Wager, T. D. Performance-dependent inhibition of pain by an executive working memory task. Pain 149, 19-26, doi:10.1016/j.pain.2009.10.027 (2010).
41 Coen, S. J. et al. Effects of attention on visceral stimulus intensity encoding in the male human brain. Gastroenterology 135, 2065-2074, 2074 e2061, doi:10.1053/j.gastro.2008.08.005 (2008).
42 Sprenger, C. et al. Attention modulates spinal cord responses to pain. Curr Biol 22, 1019-1022, doi:10.1016/j.cub.2012.04.006 (2012).
43 Katsarava, Z. et al. A novel method of eliciting pain-related potentials by transcutaneous electrical stimulation. Headache 46, 1511-1517, doi:10.1111/j.1526-4610.2006.00446.x (2006).
44 Oh, K. J. et al. Pain-related evoked potential in healthy adults. Ann Rehabil Med 39, 108-115, doi:10.5535/arm.2015.39.1.108 (2015).
45 Yarnitsky, D., Granot, M., Nahman-Averbuch, H., Khamaisi, M. & Granovsky, Y. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain 153, 1193-1198, doi:10.1016/j.pain.2012.02.021 (2012).
46 Wellek, S. & Blettner, M. On the proper use of the crossover design in clinical trials: part 18 of a series on evaluation of scientific publications. Dtsch Arztebl Int 109, 276-281, doi:10.3238/arztebl.2012.0276 (2012).
47 Nir, R. R. & Yarnitsky, D. Conditioned pain modulation. Curr Opin Support Palliat Care 9, 131-137, doi:10.1097/SPC.0000000000000126 (2015).
48 Hoffman, H. G. et al. Manipulating presence influences the magnitude of virtual reality analgesia. Pain 111, 162-168, doi:10.1016/j.pain.2004.06.013 (2004).
49 Yamasaki, H., Kakigi, R., Watanabe, S. & Hoshiyama, M. Effects of distraction on pain-related somatosensory evoked magnetic fields and potentials following painful electrical stimulation. Brain Res Cogn Brain Res 9, 165-175 (2000).
50 Silvestrini, N. & Rainville, P. After-effects of cognitive control on pain. Eur J Pain 17, 1225-1233, doi:10.1002/j.1532-2149.2013.00299.x (2013).
51 Papagianni, A., Siedler, G., Sommer, C. & Uceyler, N. Capsaicin 8% patch reversibly reduces A-delta fiber evoked potential amplitudes. Pain Rep 3, e644, doi:10.1097/PR9.0000000000000644 (2018).