With the increase of the depth of the underground engineering, the phenomenon of splitting failure of the deep rock will appear, which is very different from the shallow cavern. In order to reveal the formation mechanism of splitting damage, mechanical model tests and numerical simulations of splitting damage were carried out respectively. Using the Pubugou Hydropower Station as the engineering background, a three-dimensional (3D) geomechanical model test was conducted relying on a high stress three-dimensional load test system. The splitting damage phenomenon of high sidewall cavern was observed, and the oscillation variations of displacement and stress were measured. Based on strain gradient theory and continuum damage mechanics, an elastic-plastic damage softening model for splitting damage was established. The relationship between rock damage and energy dissipation was analyzed. Based on the strain energy density theory, the splitting damage criterion based on the strain gradient is established. A numerical analysis method for splitting damage was proposed, and a regional disintegration calculation program was developed based on a commercial finite element code. The numerical simulation results are in basic agreement with the 3D geomechanical model test.