1 Smith K. Mental health: a world of depression. Nature 2014; 515: 181.
2 You Z, Luo C, Zhang W, Chen Y, He J, Zhao Q, Zuo R, Wu YH. Pro- and anti-inflammatory cytokines expression in rat's brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res 2011; 225: 135-41.
3 Liu YM, Shen JD, Xu LP, Li HB, Li YC, Yi LT. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int Immunopharmacol 2017; 45: 128-34.
4 Zhang J, Xie X, Tang M, Zhang J, Zhang B, Zhao Q, Han Y, Yan W, Peng C, You ZL. Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stress-exposed mice. Brain Behav Immun 2017; 66: 111-24.
5 Zhang L, Zhang J, You Z. Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder. Front Cell Neurosci 2018; 12: 306.
6 Ulrike VS, Jessica FL, Monika R, Rebecca R, Stefan B, Judith K, Reinert N, Bach A, Fink GR, Schroeter M, et al. The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo. J Neuroinflammation 2018; 15: 226.
7 Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 2006; 31: 149-60.
8 Chana G, Landau S, Beasley C, Everall IP, Cotter D. Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biol Psychiatry 2003; 53: 1086-98.
9 Valdés-Tovar M, Estrada-Reyes R, Solís-Chagoyán H, Argueta J, Dorantes-Barrón AM, Quero-Chávez D, Cruz-Garduño R, Cercós MG, Trueta C, Oikawa-Sala J, et al. Circadian modulation of neuroplasticity by melatonin: a target in the treatment of depression. Br J Pharmacol 2018; 175: 3200-8.
10 Liang M, Zhong H, Rong J, Li Y, Zhu C, Zhou L, Zhou R. Postnatal Lipopolysaccharide Exposure Impairs Adult Neurogenesis and Causes Depression-like Behaviors Through Astrocytes Activation Triggering GABAA Receptor Downregulation. J Neuroscience 2019; 422: 21-31.
11 Han Y, Zhang L, Wang Q, Zhang D, Zhao Q, Zhang J, Xie L, Liu G, You Z. Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrinology. 2019;107:37-45.
12 Jiang Y, David B, Tu P, Barbin Y. Recent analytical approaches in quality control of traditional Chinese medicines—A review. J Analytica Chimica Acta 2010; 657: 9-18.
13 Ratan ZA, Youn SH, Kwak YS, Han CK, Haidere MF, Kim JK, Min H, Jung YJ, Hosseinzadeh H et al., Adaptogenic effects of Panax ginseng on modulation of immune functions. J Ginseng Res. 2021;45(1):32-40.
14 Nair R., Sellaturay S., Sriprasad S. The history of ginseng in the management of erectile dysfunction in ancient China (3500-2600 BCE) Indian J Urol. 2012;28:15–20.
15 Shergis JL, Thien F, Worsnop CJ, Lin L, Zhang AL, Wu L, Yuanbin ChenYB, Xu YJ, Langton D, Costa CD, et al. 12-month randomised controlled trial of ginseng extract for moderate COPD. Thorax 2019; 74: 539-45.
16 Jeong HG, Ko YH, Oh SY, Han C, Kim T, Joe SH. Effect of Korean Red Ginseng as an adjuvant treatment for women with residual symptoms of major depression. Asia Pac Psychiatry 2015; 7: 330–6.
17 Ahmed T, Raza SH, Maryam A, Setzer WN. Ginsenoside Rb1 as a neuroprotective agent: A review. Brain Res Bull 2016; 125: 30-43.
18 Guo Y, Xie J, Zhang L, Yang L, Ma J, Bai Y, Ma W, Wang L, Yu H, Zeng Y et al., Ginsenoside Rb1 exerts antidepressant-like effects via suppression inflammation and activation of AKT pathway. Neurosci Lett. 2021 Jan 23;744:135561.
19 Wang GL, He ZM, Zhu HY, Gao YG, Zhao Y, Yang H, Zhang LX. Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside Rb1, a major active ingredient of Panax ginseng C.A. Meyer. J Ethnopharmacol 2017; 204: 118.
20 Wang GL, Wang YP, Zheng JY, Zhang LX. Monoaminergic and aminoacidergic receptors are involved in the antidepressant-like effect of ginsenoside Rb1 in mouse hippocampus (CA3) and prefrontal cortex. Brain Res 2018; 1699: 44-53.
21 Wang D, Zhao S, Pan J, Wang Z, Li Y, Xu X, Yang J, Zhang X, Wang Y, Liu M. Ginsenoside Rb1 attenuates microglia activation to improve spinal cord injury via microRNA-130b-5p/TLR4/NF-κB axis. J Cell Physiol 2021;236(3):2144-2155.
22 Li DW, Zhou FZ, Sun XC, Li SC, Yang JB, Sun HH, Wang AH. Ginsenoside Rb1 protects dopaminergic neurons from inflammatory injury induced by intranigral lipopolysaccharide injection. Neural Regen Res. 2019;14(10):1814-1822.
23 Dandan Z, Lei J, Youguo C. TSPO Modulates IL-4-Induced Microglia/Macrophage M2 Polarization via PPAR-γ Pathway. J Mol Neurosci 2020; 70: 542-9.
24 Mandrekar-Colucci S, Karlo JC, Landreth GE. Mechanisms Underlying the Rapid Peroxisome Proliferator-Activated Receptor-γ-Mediated Amyloid Clearance and Reversal of Cognitive Deficits in a Murine Model of Alzheimer's Disease. J Neuroscience 2012; 32: 10117-28.
25 Wen L, You W, Wang H, Meng Y, Feng J. Polarization of Microglia to the M2 Phenotype in a Peroxisome Proliferator-Activated Receptor Gamma-Dependent Manner Attenuates Axonal Injury Induced by Traumatic Brain Injury in Mice. J Neurotrauma 2018; 35: 2330-40.
26 Joung JY, Song JG, Kim HW, Oh NS. Protective Effects of Milk Casein on the Brain Function and Behavior in a Mouse Model of Chronic Stress. J Agric Food Chem. 2021;69(6):1936-1941.
27 Zhang JQ, Wu XH, Feng Y, Xie XF, Fan YH, Yan S, Zhao QY, Peng C, You ZL. Salvianolic acid B ameliorates depressive-like behaviors in chronic mild stress-treated mice: involvement of the neuroinflammatory pathway. Acta Pharmacol Sin 2016; 37: 1141-53.
28 Wang G, Lei C, Tian Y, Wang Y, Zhang R. Rb1, the Primary Active Ingredient in Panax ginseng C.A. Meyer, Exerts Antidepressant-Like Effects via the BDNF–Trkb–CREB Pathway. Front Pharmacol 2019; 10: 1034.
29 Yankelevitch-Yahav R, Franko M, Huly A, Doron RJ. The Forced Swim Test as a Model of Depressive-like Behavior. J Vis Exp 2015;(97):52587.
30 Newell EA, Exo JL, Verrier JD, Jackson TC, Gillespie DG, Janesko-Feldman K, Kochanek PM, Jackson EK. 2',3'-cAMP, 3'-AMP, 2'-AMP and Adenosine Inhibit TNF-α and CXCL10 Production From Activated Primary Murine Microglia via A2A Receptors. Brain Res. 2015;1594:27-35.
31 Roszkowski M, Bohacek J. Stress does not increase blood–brain barrier permeability in mice. J Cereb Blood Flow Metab 2016; 36.
32 Wang HY, Huang M, Wang W, Zhang Y, Ma X, Luo L, Xu XT, Xu L, Shi HB, Xu YM, et al. Microglial TLR4-induced TAK1 phosphorylation and NLRP3 activation mediates neuroinflammation and contributes to chronic morphine-induced antinociceptive tolerance. Pharmacol Res 2021: 105482.
33 Encinas JM, Enikolopov G. Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol 2008; 85: 243-72.
34 Young K, Morrison H. Quantifying Microglia Morphology from Photomicrographs of Immunohistochemistry Prepared Tissue Using ImageJ. J Vis Exp 2018; 136: 57648.
35 Khazipov R, Zaynutdinova D, Ogievetsky E, Valeeva G, Mitrukhina O, Manent J-B, Represa A. Atlas of the Postnatal Rat Brain in Stereotaxic Coordinates. Front Neuroanat 2015; 9: 161.
36 Novati A, Hulshof HJ, Koolhaas JM, Lucassen PJ, Meerlo P. Chronic sleep restriction causes a decrease in hippocampal volume in adolescent rats, which is not explained by changes in glucocorticoid levels or neurogenesis. Neuroscience 2011; 190: 145-55.
37 Gundersen HJ, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc. 1987;147(Pt 3):229-63.
38 Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, Hoyer D, Insel PA, Izzo AA, Ji Y, et al. Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol 2018; 175: 987-93.
39 Kennedy DO, Scholey AB. Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 2003; 75: 687-700.
40 Czéh B, Fuchs E, Wiborg O, Simon M. Animal models of major depression and their clinical implications. Prog Neuropsychopharmacol Biol Psychiatry 2015; 64: 293-310.
41 Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci 2015;38(10):637-658.
42 Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci. 2007;10(9):1110-5.
43 Zhao Q, Wu X, Yan S, Xie X, Fan Y, Zhang J, Peng C, You ZL. The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARγ-mediated alteration of microglial activation phenotypes. J Neuroinflammation 2016; 13: 259.
44 Gao H, Kang N, Hu C, Zhang Z, Yang S. Ginsenoside Rb1 exerts anti-inflammatory effects in vitro and in vivo by modulating Toll-like Receptor 4 dimerization and NF-kB/MAPKs signaling pathways. Phytomedicine 2020; 69: 153197.
45 Hao Y, Ge H, Sun M, Gao Y. Selecting an Appropriate Animal Model of Depression. Int J Mol Sci. 2019;20(19):4827.
46 Lee SK. Sex as an important biological variable in biomedical research. BMB Rep. 2018;51(4):167-173.
47 Hao K, Gong P, Sun S, Hao H, Wang G, Dai Y, Liang Y, Xie L, Li FY. Beneficial estrogen-like effects of ginsenoside Rb1, an active component of Panax ginseng, on neural 5-HT disposition and behavioral tasks in ovariectomized mice. Eur J Pharmacol 2011; 659: 15-25.
48 Yamada N, Araki H, Yoshimura H. Identification of antidepressant-like ingredients in ginseng root (Panax ginseng C.A. Meyer) using a menopausal depressive-like state in female mice: participation of 5-HT2A receptors. Psychopharmacology (Berl) 2011; 216: 589-99.
49 Khler O, Krogh J, Mors O, Benros ME. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment. Curr Neuropharmacol 2015; 14: 732-42.
50 Wang Y, Han Q, Gong W, Pan D, Wang L, Hu W, Yang M, Li B, Yu J, Liu Q. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation. 2018;15(1):21.
51 Kaoru S. Effects of Microglia on Neurogenesis. Glia 2015; 63: 1394-405.
52 Campbell S, Marriott M, Nahmias C, Macqueen GM. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 2004; 161: 598-607.
53 Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, Uylings Harry B M, Friedman L, Rajkowska G. Cellular changes in the postmortem hippocampus in major depression. Biological Psychiatry 2004; 56: 640-50.
54 Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009; 158: 1021-9.
55 Vay SU, Vay SU, Flitsch LJ, Rabenstein M, Rogall R, Blaschke S, Kleinhaus J, Reinert N, Bach A, Fink GR, Schroeter M, Rueger MA. The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo. J Neuroinflammation. 2018;15(1):226.
56 Liu L, Hoang-Gia T, Wu H, Lee MR, Gu L, Wang C, Yun BS, Wang QJ, Ye SQ, Sung CK. Ginsenoside Rb1 improves spatial learning and memory by regulation of cell genesis in the hippocampal subregions of rats. Brain Research 2011; 1382: 147-54.
57 Guo Y, Xie J, Zhang L, Yang L, Ma J, Bai Y, Ma WJ, Wang L, Yu HF, Zeng YQ, et al. Ginsenoside Rb1 exerts antidepressant-like effects via suppression inflammation and activation of AKT pathway. Neurosci Lett 2020; 744: 135561.
58 Guo M, Li C, Lei Y, Xu S, Zhao D, Lu XY. Role of the adipose PPARγ-adiponectin axis in susceptibility to stress and depression/anxiety-related behaviors. Mol Psychiatry 2016; 22: 1056-68.