[1]. Zhang, P., Jiang, X., Yuan, P., Yan, H. & Yang, D. Silver nanopaste: Synthesis, reinforcements and application. Int. J. Heat Mass Transf.127, 1048–1069 (2018).
[2] Gomatam, R. & Mittal, K. L. Electrically conductive adhesives. Electr. Conduct. Adhes. 1–425 (2008) doi:10.1007/0-387-32989-7_41.
[3] Paknejad, S. A. & Mannan, S. H. Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab.70, 1–11 (2017).
[4] Hu, P., O’Neil, W. & Hu, Q. Synthesis of 10 nm Ag nanoparticle polymer composite pastes for low temperature production of high conductivity films. Appl. Surf. Sci.257, 680–685 (2010).
[5] Yang, X., He, W., Wang, S., Zhou, G. & Tang, Y. Preparation and properties of a novel electrically conductive adhesive using a composite of silver nanorods, silver nanoparticles, and modified epoxy resin. Journal of Materials Science: Materials in Electronics vol. 23 108–114 (2012).
[6] Fu, S. C., Zhao, M., Shan, H. & Li, Y. Fabrication of large-area interconnects by sintering of micron Ag paste. Mater. Lett.226, 26–29 (2018).
[7] Zhang, W. et al. The pressureless sintering of micron silver paste for electrical connections. J. Alloys Compd.795, 163–167 (2019).
[8] Hu, A. et al. Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl. Phys. Lett.97, 153113–153117 (2010).
[9] Lee, H. H., Chou, K. Sen & Huang, K. C. Inkjet printing of nanosized silver colloids. Nanotechnology16, 2436–2441 (2005).
[10] Chen, D. et al. Choice of the low-temperature sintering Ag paste for a-Si:H/c-Si heterojunction solar cell based on characterizing the electrical performance. J. Alloys Compd.618, 357–365 (2015).
[11] Want, R. An introduction to RFID technology. IEEE Pervasive Comput.5, 25–33 (2006).
[12] Yang, Y., Cui, Y. Y., Chen, G. X. & He, M. H. Preparation and Study of Ink-Jet Printing of Ag Based Conductive Ink on Paper. Appl. Mech. Mater.731, 524–527 (2015).
[13] Kim, D., Jeong, S., Park, B. K. & Moon, J. Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions. Appl. Phys. Lett.89, 2123 (2006).
[14] Kirkpatrick & Scott. Percolation and Conduction. Rev. Mod. Phys.45, 574–588 (1973).
[15] Ruschau, G. R., Yoshikawa, S. & Newnham, R. E. Resistivities of conductive composites. J. Appl. Phys.72, 953–959 (1992).
[16] Stratton, R. Theory of Field Emission from Semiconductors. Phys Rev125, 67–82 (1962).
[17] Chen, D. et al. Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. J. Mater. Sci. Mater. Electron.21, 486–490 (2010).
[18] Liu, C. et al. Effects of polyester resin molecular weight on the performance of low temperature curing silver pastes. J. Mater. Sci. Mater. Electron.27, 6511–6516 (2016).
[19] Park, B. G., Jung, K. H. & Jung, S. B. Fabrication of the hybrid Ag paste combined by Ag nanoparticle and micro Ag flake and its flexibility. J. Alloys Compd.699, 1186–1191 (2017).
[20] Alam, M. K. Introductory Chapter: Electrical and Electronic Properties of Materials. (2019).
[21] Raj, E. S. & Jonathan, B. Lowering the Silver Content in Automotive Conductive Pastes. Johnson Matthey Technol. Rev.61, 156–164 (2017).
[22] Li, C. F. et al. Highly Conductive Ag Paste for Recoverable Wiring and Reliable Bonding Used in Stretchable Electronics. ACS Appl. Mater. Interfaces11, 3231–3240 (2019).
[23] Zhan, H. et al. Synthesis of Silver Flakes and Their Application as Conductive Filler for Low-Curing-Temperature Silver Pastes. J. Electron. Mater.48, 2745–2753 (2019).
[24] Examiner, P., Kopec, M., Application, F. & Data, P. Conductive silver paste and conductive film formed using the same. vol. 2 (2007).