Babiloni, C., Del Percio, C., Lizio, R., Marzano, N., Infarinato, F., Soricelli, A., Salvatore, E., Ferri, R., Bonforte, C., Tedeschi, G., Montella, P., Baglieri, A., Rodriguez, G., Famà, F., Nobili, F., Vernieri, F., Ursini, F., Mundi, C., Frisoni, G.B., Rossini, P.M., 2014. Cortical sources of resting state electroencephalographic alpha rhythms deteriorate across time in subjects with amnesic mild cognitive impairment. Neurobiol. Aging 35, 130–142. https://doi.org/10.1016/j.neurobiolaging.2013.06.019
Babiloni, C., Frisoni, G.B., Vecchio, F., Lizio, R., Pievani, M., Cristina, G., Fracassi, C., Vernieri, F., Rodriguez, G., Nobili, F., Ferri, R., Rossini, P.M., 2011. Stability of clinical condition in mild cognitive impairment is related to cortical sources of alpha rhythms: An electroencephalographic study. Hum. Brain Mapp. 32, 1916–1931. https://doi.org/10.1002/hbm.21157
Berendse, H.., Verbunt, J.P.., Scheltens, P., van Dijk, B.., Jonkman, E.., 2000. Magnetoencephalographic analysis of cortical activity in Alzheimer’s disease: a pilot study. Clin. Neurophysiol. 111, 604–612. https://doi.org/10.1016/S1388-2457(99)00309-0
Braak, H., Braak, E., 1991. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259. https://doi.org/10.1007/BF00308809
Brown, B.M., Peiffer, J.J., Taddei, K., Lui, J.K., Laws, S.M., Gupta, V.B., Taddei, T., Ward, V.K., Rodrigues, M.A., Burnham, S., Rainey-Smith, S.R., Villemagne, V.L., Bush, A., Ellis, K.A., Masters, C.L., Ames, D., Macaulay, S.L., Szoeke, C., Rowe, C.C., Martins, R.N., 2013. Physical activity and amyloid-b plasma and brain levels: results from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Mol. Psychiatry 18, 875–881. https://doi.org/10.1038/mp.2012.107
Brown, B.M., Rainey-Smith, S.R., Dore, V., Pfeiffer, J.J., Burnham, S.C., M, L.S., Taddei, K., Ames, D., Masters, C.L., Rowe, C.C., Martins, R.N., Villemagne, V.L., 2018. Self-Reported Physical Activity is Associated with Tau Burden Measured by Positron Emission Tomography. J. Alzheimer’s Dis. 63, 1299:1305. https://doi.org/10.3233/JAD-170998
Chang, M., Jonsson, P. V, Snaedal, J., Bjornsson, S., Saczynski, J.S., Aspelund, T., Eiriksdottir, G., Jonsdottir, M.K., Lopez, O.L., Harris, T.B., Gudnason, V., Launer, L.J., 2010. The Effect of Midlife Physical Activity on Cognitive Function Among Older Adults: AGES—Reykjavik Study. JOURNALS Gerontol. Ser. A-BIOLOGICAL Sci. Med. Sci. 65, 1369–1374. https://doi.org/10.1093/gerona/glq152
Chang, Y.K., Labban, J.D., Gapin, J.I., Etnier, J.L., 2012. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 1453, 87–101. https://doi.org/10.1016/j.brainres.2012.02.068
Chen, X., Mobley, W.C., 2019. Alzheimer Disease Pathogenesis : Insights From Molecular and Cellular Biology Studies of Oligomeric A β and Tau Species. Front. Neurosci. 13. https://doi.org/10.3389/fnins.2019.00659
Choi, M.R., Kim, J.Y., Yi, E.S., 2018. Development and validation of exercise rehabilitation program for cognitive function and activity of daily living improvement in mild dementia elderly. J. Exerc. Rehabil. 14, 207–212. https://doi.org/10.12965/jer.1836176.088
Chomistek, A.K., Yuan, C., Matthews, C.E., Troiano, R.P., Bowles, H.R., Rood, J., Barnett, J.B., Willett, W.C., Rimm, E.B., Bassett, D.R., 2017. Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water. Med. Sci. Sports Exerc. 49, 1935–1944. https://doi.org/10.1249/MSS.0000000000001299
Chudyk, A.M., McAllister, M.M., Cheung, H.K., McKay, H.A., Ashe, M.C., 2017. Are we missing the sitting? Agreement between accelerometer non-wear time validation methods used with older adults’ data. Cogent Med. 4. https://doi.org/10.1080/2331205X.2017.1313505
Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., Pericak-Vance, M.A., 1993. Gene Dose of Alipoprotein EType 4 Allele and the Risk of Alzheimer’s Disease in Late Onset Families. Science (80-. ). 261, 921–923.
de Frutos-Lucas, J. De, López-Sanz, D., Zuluaga, P., Rodríguez-Rojo, I.C., Luna, R., María Eugenia, L., Delgado-losada, M.L., Marcos, A., Barabash, A., López-higes, R., Maestú, F., Fernández, A., 2018. Clinical Neurophysiology Physical activity effects on the individual alpha peak frequency of older adults with and without genetic risk factors for Alzheimer ’ s Disease : A MEG study. Clin. Neurophysiol. 129, 1981–1989. https://doi.org/10.1016/j.clinph.2018.06.026
de Frutos-Lucas, J., Cuesta, P., López-Sanz, D., Peral-Suárez, Á., Cuadrado-Soto, E., Ramírez-Toraño, F., Brown, B.M., Serrano, J.M., Laws, S.M., Rodríguez-Rojo, I.C., Verdejo-Román, J., Bruña, R., Delgado-Losada, M.L., Barabash, A., López-Sobaler, A.M., López-Higes, R., Marcos, A., Maestú, F., 2020. The relationship between physical activity, apolipoprotein E ε4 carriage and brain health. 19 March 2020 PREPRINT (Version 2). https://doi.org/Available at Research Square DOI:10.21203/rs.2.22674/v1
Dimitrova, J., Hogan, M., Khader, P., O’Hora, D., Kilmartin, L., Walsh, J.C., Roche, R., Anderson-Hanley, C., 2017. Comparing the effects of an acute bout of physical exercise with an acute bout of interactive mental and physical exercise on electrophysiology and executive functioning in younger and older adults. Aging Clin. Exp. Res. 29, 959–967. https://doi.org/10.1007/s40520-016-0683-6
Ebert, U., Kirch, W., 1998. Scopolamine model of dementia: Electroencephalogram findings and cognitive performance. Eur. J. Clin. Invest. 28, 944–949. https://doi.org/10.1046/j.1365-2362.1998.00393.x
Erickson, K.I., Weinstein, A.M., Lopez, O.L., 2012. Physical Activity , Brain Plasticity , and Alzheimer ’ s Disease. Arch. Med. Res. 43, 615–621. https://doi.org/10.1016/j.arcmed.2012.09.008
Escudero, J., Hornero, R., Abásolo, D., Fernández, A., 2009. Blind source separation to enhance spectral and non-linear features of magnetoencephalogram recordings. Application to Alzheimer’s disease. Med. Eng. Phys. 31, 872–9. https://doi.org/10.1016/j.medengphy.2009.04.003
Farrer, Lindsay, A., Cupples, L.A., Haines, J.L., HYman, B., Kukull, W.A., Mayeux, R., Myers, R.H., Pericak-Vance, M.A., Risch, N., van Duijin, C.M., 1997. Effects of Age , Sex , and Ethnicity on the Association Between Apolipoprotein E Genotype and Alzheimer Disease. JAMA - J. Am. Med. Assoc. 278, 22–29.
Fenesi, B., Fang, H., Kovacevic, A., Oremus, M., Parminder, R., Heisz, J.J., 2017. Physical Exercise Moderates the Relationship of Apolipoprotein E (APOE) Genotype and Dementia Risk: A Population-Based Study. J. Alzheimer’s Dis. 56, 297–303. https://doi.org/10.3233/JAD-160424
Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Kouwe, A. Van Der, Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M., 2002. Whole Brain Segmentation : Neurotechnique Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron 33, 341–355.
Fornito, A., Zalesky, A., Bullmore, E.T., 2016. Fundamentals of Brain Network Analysis. Elsevier, London.
Förstl, H., Kurz, A., 1999. Clinical features of Alzheimer’s disease. Eur. Arch. Psychiatry Clin. Neurosci. 249, 288–290. https://doi.org/10.1007/s004060050101
Gaál, Z.A., Boha, R., Stam, C.J., Molnár, M., 2010. Age-dependent features of EEG-reactivity-Spectral, complexity, and network characteristics. Neurosci. Lett. 479, 79–84. https://doi.org/10.1016/j.neulet.2010.05.037
Garcés, P., López-Sanz, D., Maestú, F., Pereda, E., 2017. Choice of magnetometers and gradiometers after signal space separation. Sensors (Switzerland) 17, 1–13. https://doi.org/10.3390/s17122926
Garcés, P., Vicente, R., Wibral, M., Pineda-Pardo, J. ángel, López, M.E., Aurtenetxe, S., Marcos, A., de Andrés, M.E., Yus, M., Sancho, M., Maestú, F., Fernández, A., 2013. Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment. Front. Aging Neurosci. 5, 1–7. https://doi.org/10.3389/fnagi.2013.00100
Gil-Rey, E., Maldonado-Martín, S., Gorostiaga, E.M., 2019. Individualized Accelerometer Activity Cut-Points for the Measurement of Relative Physical Activity Intensity Levels. Res. Q. Exerc. Sport 90, 327–335. https://doi.org/10.1080/02701367.2019.1599801
Gómez, C., M Pérez-Macías, J., Poza, J., Fernández, A., Hornero, R., 2013. Spectral changes in spontaneous MEG activity across the lifespan. J. Neural Eng. 10. https://doi.org/10.1088/1741-2560/10/6/066006
Gutmann, B., Mierau, A., Hülsdünker, T., Hildebrand, C., Przyklenk, A., Hollmann, W., Strüder, H.K., 2015. Effects of physical exercise on individual resting state EEG alpha peak frequency. Neural Plast. 2015. https://doi.org/10.1155/2015/717312
Head, D., Bugg, J.M., Goate, A.M., Fagan, A.M., Mintun, M.A., Benzinger, T., Holtzman, D.M., Morris, J.C., 2012. Exercise engagement as a moderator of APOE effects on amyloid deposition. Arch Neurol 69, 636–643. https://doi.org/10.1001/archneurol.2011.845.Exercise
Herrero, M.J., Blanch, J., Peri, J.M., de Pablo, J., Pintor, L., Bulbena, A., 2003. A validation study of the hospital anxiety and depression scale (HADS) in a Spanish population. Gen. Hosp. Psychiatry 25, 277–283.
Horne, J., 2013. Exercise benefits for the aging brain depend on the accompanying cognitive load: Insights from sleep electroencephalogram. Sleep Med. 14, 1208–1213. https://doi.org/10.1016/j.sleep.2013.05.019
Jack, C.R., Wiste, B.A., H.J., Weigand, S.D., Rocca, W.A., Knopman, D.S., Mielke, M.M., Lowe, V.J., Senjem, M.L., Gunter, J.L., Preboske, G.M., Pankratz, V.S., Vemuri, P., Petersen, R.C., 2014. Age-specific population frequencies of amyloidosis and neurodegeneration among cognitively normal people age 50-89 years: a cross-sectional study. Lancet Neurol 13, 997–1005. https://doi.org/10.3174/ajnr.A1256.Functional
Jack Jr, C.R., Therneau, T.M., Weigand, S.D., Wiste, H.J., Knopman, D.S., Vemuri, P., Lowe, V.J., Mielke, M.M., Roberts, R.O., Machulda, M.M., Graff-radford, J., Jones, D.T., Schwarz, C.G., Gunter, J.L., Senjem, M.L., Rocca, W.A., Petersen, R.C., 2019. Prevalence of Biologically vs Clinically Defined Alzheimer Spectrum Entities Using the National Institute on Aging–Alzheimer’s Association Research Framework. JAMA Neurol. 76, 1174–1183. https://doi.org/10.1001/jamaneurol.2019.1971
Kennedy, G., Hardman, R.J., Macpherson, H., Scholey, A.B., Pipingas, A., 2017. How Does Exercise Reduce the Rate of Age-Associated Cognitive Decline ? A Review of Potential Mechanisms. J. Alzheimer’s Dis. 55, 1–18. https://doi.org/10.3233/JAD-160665
Kivipelto, M., Mangialasche, F., Ngandu, T., 2018. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol. https://doi.org/10.1038/s41582-018-0070-3
Kubitz, K.A., Pothakos, K., 1997. Does Aerobic Exercise Decrease Brain Activation? J. Sport. Exerc. Psychol. 19, 291–301. https://doi.org/10.1017/CBO9781107415324.004
Kuo, T.B.J., Li, J.Y., Shen-Yu Hsieh, S., Chen, J.J., Tsai, C.Y., Yang, C.C.H., 2010. Effect of aging on treadmill exercise induced theta power in the rat. Age (Omaha). 32, 297–308. https://doi.org/10.1007/s11357-010-9143-y
Li, J.Y., Kuo, T.B.J., Hsieh, S.S.Y., Yang, C.C.H., 2008. Changes in electroencephalogram and heart rate during treadmill exercise in the rat. Neurosci. Lett. 434, 175–178. https://doi.org/10.1016/j.neulet.2008.01.052
Lindsay, J., Laurin, D., Verreault, R., Hébert, R., Helliwell, B., Hill, G.B., Mcdowell, I., 2002. Risk Factors for Alzheimer ’ s Disease : A Prospective Analysis from the Canadian Study of Health and Aging. Am. J. Epidemiol. 156, 445–453. https://doi.org/10.1093/aje/kwf074
López-Sanz, D., Bruña, R., de Frutos-Lucas, J., Maestú, F., 2019. Magnetoencephalography applied to the study of Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 165, 25–61. https://doi.org/10.1016/bs.pmbts.2019.04.007
López-Sanz, D., Bruña, R., Garcés, P., Camara, C., Serrano, N., Rodríguez-Rojo, I.C., Delgado, M.L., Montenegro, M., López-Higes, R., Yus, M., Maestú, F., 2016. Alpha band disruption in the AD-continuum starts in the Subjective Cognitive Decline stage: a MEG study. Sci. Rep. 6, 37685. https://doi.org/10.1038/srep37685
Luck, T., Luppa, M., Wiese, B., Köhler, M., Jessen, F., Bickel, H., Weyerer, S., Pentzek, M., Konig, H.-H., Prokein, J., Ernst, A., Wagner, M., Mosch, E., Werle, J., Fuchs, A., Brettschneider, C., Scherer, M., Maier, W., 2014. Apolipoprotein E epsilon 4 genotype and a physically active lifestyle in late life : analysis of gene – environment interaction for the risk of dementia and Alzheimer ’ s disease dementia. Psychol. Med. 44, 1319–1329. https://doi.org/10.1017/S0033291713001918
Mattson, M.P., Magnus, T., 2006. Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 7, 278–294. https://doi.org/10.1038/nrn1886
Mechau, D., Mücke, S., Weiß, M., Liesen, H., 1998. Effect of increasing running velocity on electroencephalogram in a field test. Eur. J. Appl. Physiol. Occup. Physiol. 78, 340–345. https://doi.org/10.1007/s004210050429
Moraes, H., Deslandes, A., Silveira, H., Ribeiro, P., Cagy, M., Piedade, R., Pompeu, F., Laks, J., 2011. The effect of acute effort on EEG in healthy young and elderly subjects. Eur. J. Appl. Physiol. 111, 67–75. https://doi.org/10.1007/s00421-010-1627-z
Moretti, D. V., Babiloni, C., Binetti, G., Cassetta, E., Dal Forno, G., Ferreric, F., Ferri, R., Lanuzza, B., Miniussi, C., Nobili, F., Rodriguez, G., Salinari, S., Rossini, P.M., 2004. Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin. Neurophysiol. 115, 299–308. https://doi.org/10.1016/S1388-2457(03)00345-6
Mufson, E.J., Counts, S.E., Perez, S.E., Ginsberg, S.D., 2008. 1Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev. Neurother 8, 1703–1718.
Nolte, G., 2003. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 48, 3637–3652. https://doi.org/10.1088/0031-9155/48/22/002
Okonkwo, O.C., Schultz, S.A., Oh, J.M., Larson, J., Edwards, D., Cook, D., Koscik, R., Gallagher, C.L., Dowling, N.M., Carlsson, C.M., Rowley, H.A., Christian, B.T., Hermann, B.P., Johnson, S.C., Sager, M.A., 2014. Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology 83, 1760.
Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869. https://doi.org/10.1155/2011/156869
Osipova, D., Ahveninen, J., Jensen, O., Ylikoski, A., Pekkonen, E., 2005. Altered generation of spontaneous oscillations in Alzheimer’s disease. Neuroimage 27, 835–841. https://doi.org/10.1016/J.NEUROIMAGE.2005.05.011
Podewils, L.J., Guallar, E., Kuller, L.H., Fried, L.P., Lopez, O.L., Carlson, M., Lyketsos, C.G., 2005. Physical Activity , APOE Genotype , and Dementia Risk : Findings from the Cardiovascular Health Cognition Study. Am. J. Epidemiol. 161, 639–651. https://doi.org/10.1093/aje/kwi092
Poirier, J., Delisle, M.C., Quirion, R., Aubert, I., Farlow, M., Lahiri, D., Hui, S., Bertrand, P., Nalbantoglu, J., Gilfix, B.M., Gauthier, S., 1995. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 92, 12260–12264. https://doi.org/10.1073/pnas.92.26.12260
Poza, J., Hornero, R., Abásolo, D., Fernández, A., García, M., 2007. Extraction of spectral based measures from MEG background oscillations in Alzheimer’s disease. Med. Eng. Phys. 29, 1073–1083. https://doi.org/10.1016/j.medengphy.2006.11.006
Poza, J., Hornero, R., Abásolo, D., Fernández, A., Mayo, A., 2008a. Evaluation of spectral ratio measures from spontaneous MEG recordings in patients with Alzheimer’s disease. Comput. Methods Programs Biomed. 90, 137–47. https://doi.org/10.1016/j.cmpb.2007.12.004
Poza, J., Hornero, R., Escudero, J., Fernández, A., Sánchez, C.I., 2008b. Regional analysis of spontaneous MEG rhythms in patients with alzheimer’s disease using spectral entropies. Ann. Biomed. Eng. 36, 141–152. https://doi.org/10.1007/s10439-007-9402-y
Prince, M., Wimo, A., Guerchet, M., Ali, G.-C., Wu, Y.-T., Prina, M., 2015. World Alzheimer Report 2015 The Global Impact of Dementia, Alzheimer’s Disease International. London.
Rathmann, K.L., Conner, C.S., 2007. Alzheimer’s disease: clinical features, pathogenesis, and treatment. Ann. Pharmacother. 41, 1499–1504. https://doi.org/10.1345/aph.140065
Rovio, S., Kareholt, I., Helkala, E.-L., Viitanen, M., Winblad, B., Tuomilehto, J., Soininen, H., Nissinen, A., Kivipelto, M., 2005. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol 4, 705–711. https://doi.org/10.1016/S1474-4422(05)70198-8
Sanchez-Lopez, J., Silva-Pereyra, J., Fernández, T., Alatorre-Cruz, G.C., Castro-Chavira, S.A., González-López, M., Sánchez-Moguel, S.M., 2018. High levels of incidental physical activity are positively associated with cognition and EEG activity in aging. PLoS One 13, 1–18. https://doi.org/10.1371/journal.pone.0191561
Schättin, A., Gennaro, F., Egloff, M., Vogt, S., de Bruin, E.D., 2018. Physical activity, nutrition, cognition, neurophysiology, and short-time synaptic plasticity in healthy older adults: A cross-sectional study. Front. Aging Neurosci. 10, 1–15. https://doi.org/10.3389/fnagi.2018.00242
Smith, J.C., Nielson, K. a, Woodard, J.L., Seidenberg, M., Rao, S.M., 2013. Physical activity and brain function in older adults at increased risk for Alzheimer’s disease. Brain Sci. 3, 54–83. https://doi.org/10.3390/brainsci3010054
Susi, G., Frutos-Lucas, J. De, Niso, G., Ye-chen, S.M., Toro, L.A., Vilca Chino, N.B., Maestú, F., 2019. Healthy and Pathological Neurocognitive Aging : Spectral and Functional Connectivity Analyses Using Mag netoencephalography. Oxford Res. Encycl. Psychol. https://doi.org/10.1093/acrefore/9780190236557.013.387
Taulu, S., Simola, J., 2006. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys. Med. Biol. 51, 1759–1768. https://doi.org/10.1088/0031-9155/51/7/008
Troiano, R.P., Berrigan, D., Dodd, K.W., Mâsse, L.C., Tilert, T., Mcdowell, M., 2008. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 40, 181–188. https://doi.org/10.1249/mss.0b013e31815a51b3
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–89. https://doi.org/10.1006/nimg.2001.0978
Van Veen, B.D., van Drongelen, W., Yuchtman, M., Suzuki, A., Veen, B.D. Van, Drongelen, W. Van, Yuchtman, M., Suzuki, A., 1997. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880. https://doi.org/10.1109/10.623056
Vogt, T., Schneider, S., Brümmer, V., Strüder, H.K., 2010. Frontal EEG asymmetry: The effects of sustained walking in the elderly. Neurosci. Lett. 485, 134–137. https://doi.org/10.1016/j.neulet.2010.09.001
Weschler, D., 2008. Wechsler adult intelligence scale–Fourth Edition (WAIS–IV), Fourth Edi. ed. Pearson, San Antonio, TX.
Woo, M., Kim, S., Kim, J., Petruzzello, S.J., Hatfield, B.D., 2009. Examining the exercise-affect dose-response relationship: Does duration influence frontal EEG asymmetry? Int. J. Psychophysiol. 72, 166–172. https://doi.org/10.1016/j.ijpsycho.2008.12.003
Yamazaki, Y., Zhao, N., Caulfield, T.R., Liu, C.C., Bu, G., 2019. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518. https://doi.org/10.1038/s41582-019-0228-7
Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., Leirer, V.O., 1982. Development and validation of a geriatric depression screening scale: a preliminary report. . J. Psychiatr. Res. 17, 37–49.
Yuri Di Marco, L., Marzo, A., Munoz-Ruiz, M., Ikram, M.A., Kivipelto, M., Ruefenacht, D., Venneri, A., Soininen, H., Wanke, I., Ventikos, Y.A., Frangi, A.F., 2014. Modifiable Lifestyle Factors in Dementia : A Systematic Review of Longitudinal Observational Cohort Studies. J. Alzheimer’s Dis. 42, 119–135. https://doi.org/10.3233/JAD-132225
Zalesky, A., Fornito, A., Bullmore, E.T., 2010. Network-based statistic: Identifying differences in brain networks. Neuroimage 53, 1197–1207. https://doi.org/10.1016/j.neuroimage.2010.06.041