Bruijn, S. M., van Dieën, J. H., Meijer, O. G., & Beek, P. J. (2009). Statistical precision and sensitivity of measures of dynamic gait stability. Journal of Neuroscience Methods, 178(2), 327–333. https://doi.org/10.1016/j.jneumeth.2008.12.015
Craig, J. J., Bruetsch, A. P., Lynch, S. G., Horak, F. B., & Huisinga, J. M. (2017). Instrumented balance and walking assessments in persons with multiple sclerosis show strong test-retest reliability. Journal of NeuroEngineering and Rehabilitation, 14(1), 1–9. https://doi.org/10.1186/s12984-017-0251-0
Doheny, E. P., Foran, T. G., & Greene, B. R. (2010). A single gyroscope method for spatial gait analysis. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, (August), 1300–1303. https://doi.org/10.1109/IEMBS.2010.5626397
Engelhard, M. M., Dandu, S. R., Patek, S. D., Lach, J. C., & Goldman, M. D. (2016). Quantifying six-minute walk induced gait deterioration with inertial sensors in multiple sclerosis subjects. Gait and Posture, 49, 340–345. https://doi.org/10.1016/j.gaitpost.2016.07.184
Frechette, M. L., Meyer, B. M., Tulipani, L. J., Gurchiek, R. D., McGinnis, R. S., & Sosnoff, J. J. (2019). Next Steps in Wearable Technology and Community Ambulation in Multiple Sclerosis. Current Neurology and Neuroscience Reports, 19(10). https://doi.org/10.1007/s11910-019-0997-9
Greene, B. R., Foran, T. G., McGrath, D., Doheny, E. P., Burns, A., & Caulfield, B. (2012). A comparison of algorithms for body-worn sensor-based spatiotemporal gait parameters to the gaitrite electronic walkway. Journal of Applied Biomechanics, 28(3), 349–355. https://doi.org/10.1123/jab.28.3.349
Greene, B. R., Healy, M., Rutledge, S., Caulfield, B., & Tubridy, N. (2014). Quantitative assessment of multiple sclerosis using inertial sensors and the TUG test. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, 2977–2980. https://doi.org/10.1109/EMBC.2014.6944248
Greene, B. R., McGrath, D., O’Neill, R., O’Donovan, K. J., Burns, A., & Caulfield, B. (2010). An adaptive gyroscope-based algorithm for temporal gait analysis. Medical and Biological Engineering and Computing, 48(12), 1251–1260. https://doi.org/10.1007/s11517-010-0692-0
Greene, B. R., Rutledge, S., McGurgan, I., McGuigan, C., O’Connell, K., Caulfield, B., & Tubridy, N. (2015). Assessment and Classification of Early-Stage Multiple Sclerosis with Inertial Sensors: Comparison Against Clinical Measures of Disease State. IEEE Journal of Biomedical and Health Informatics, 19(4), 1356–1361. https://doi.org/10.1109/JBHI.2015.2435057
Hausdorff, J. M. (2005). Gait variability : methods , modeling and meaning Example of Increased Stride Time Variability in Elderly Fallers Quantification of Stride-to-Stride Fluctuations. 9, 1–9. https://doi.org/10.1186/1743-Received
Hollman, J. H., Childs, K. B., McNeil, M. L., Mueller, A. C., Quilter, C. M., & Youdas, J. W. (2010). Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait and Posture, 32(1), 23–28. https://doi.org/10.1016/j.gaitpost.2010.02.017
Hubble, R. P., Naughton, G. A., Silburn, P. A., & Cole, M. H. (2015). Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s disease: A systematic review. PLoS ONE, 10(4), 1–22. https://doi.org/10.1371/journal.pone.0123705
Kamm, C. P., Uitdehaag, B. M., & Polman, C. H. (2014). Multiple sclerosis: Current knowledge and future outlook. European Neurology, 72(3–4), 132–141. https://doi.org/10.1159/000360528
Kang, H. G., & Dingwell, J. B. (2006). Intra-session reliability of local dynamic stability of walking. 24, 386–390. https://doi.org/10.1016/j.gaitpost.2005.11.004
Kojima, M., Obuchi, S., Henmi, O., & Iketa, N. (2008). Comparison of smoothness during gait between community dwelling elderly fallers and non-fallers using power spectrum entropy of acceleration time-series. Journal of Physical Therapy Science, 20(4), 243–248. https://doi.org/10.1589/jpts.20.243
Konig, N., Singh, N. B., Beckerath, J. Von, Janke, L., & Taylor, W. R. (2014). Is gait variability reliable ? An assessment of spatio-temporal parameters of gait variability during continuous overground walking. Gait & Posture, 39, 615–617. https://doi.org/10.1016/j.gaitpost.2013.06.014
Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012
Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33(11), 1444–1452. https://doi.org/10.1212/wnl.33.11.1444
Lindemann, U., Najafi, B., Zijlstra, W., Hauer, K., Muche, R., Becker, C., & Aminian, K. (2008). Distance to achieve steady state walking speed in frail elderly persons. 27, 91–96. https://doi.org/10.1016/j.gaitpost.2007.02.005
Lord, S., Galna, B., & Rochester, L. (2013). Moving forward on gait measurement: Toward a more refined approach. Movement Disorders, 28(11), 1534–1543. https://doi.org/10.1002/mds.25545
McGraw, K. O., & Wong, S. P. (1996). “Forming inferences about some intraclass correlations coefficients”: Correction. Psychological Methods, 1(4), 390–390. https://doi.org/10.1037//1082-989x.1.4.390
McKay, M. J., Baldwin, J. N., Ferreira, P., Simic, M., Burns, J., Vanicek, N., … Burns, J. (2017). Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3–101 years. Gait and Posture, 58, 78–87. https://doi.org/10.1016/j.gaitpost.2017.07.004
Najafi, B., Helbostad, J. L., Moe-Nilssen, R., Zijlstra, W., & Aminian, K. (2009). Does walking strategy in older people change as a function of walking distance? Gait and Posture, 29(2), 261–266. https://doi.org/10.1016/j.gaitpost.2008.09.002
Owings, T. M., & Grabiner, M. D. (2004). Variability of step kinematics in young and older adults. 20, 26–29. https://doi.org/10.1016/S0966-6362(03)00088-2
Riva, F., Bisi, M. C., & Stagni, R. (2014). Gait variability and stability measures : Minimum number of strides and within-session reliability. Computers in Biology and Medicine, 50, 9–13. https://doi.org/10.1016/j.compbiomed.2014.04.001
Simon, S. R. (2004). Quantification of human motion: Gait analysis - Benefits and limitations to its application to clinical problems. Journal of Biomechanics, 37(12), 1869–1880. https://doi.org/10.1016/j.jbiomech.2004.02.047
Spain, R. I., George, R. J. S., Slarian, A., Mancini, M., Wagner, J. M., Horak, F. B., & Bourdette, D. (2012). Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait & Posture, 35(4), 573–578. https://doi.org/10.1016/j.gaitpost.2011.11.026
Van Schooten, K. S., Rispens, S. M., Elders, P. J. M., & Diee, J. H. Van. (2014). Toward ambulatory balance assessment : Estimating variability and stability from short bouts of gait. 39, 695–699. https://doi.org/10.1016/j.gaitpost.2013.09.020
Vienne-Jumeau, A., Quijoux, F., Vidal, P. P., & Ricard, D. (2019). Value of gait analysis for measuring disease severity using inertial sensors in patients with multiple sclerosis: Protocol for a systematic review and meta-analysis. Systematic Reviews, 8(1), 1–5. https://doi.org/10.1186/s13643-018-0918-z