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Abstract
Arrowroot starch (AA)-based films incorporated with a carnauba wax nanoemulsion (CWN), cellulose
nanocrystals (CNCs), and essential oils (EOs) from Mentha spicata (MEO) and Cymbopogon martinii
(CEO) were produced using the casting technique and then characterized in terms of their water barrier,
tensile, thermal, optical, and microstructural properties and in vitro antifungal activity against Rhizopus
stolonifer and Botrytis cinerea. Whereas the incorporation of CNCs decreased the moisture content and
water vapor permeability of the AA/CWN/CNC film, the additional incorporation of either EO decreased
the transparency and affected the microstructure of the AA/CWN/CNC/EO nanocomposites. MEO and
CEO incorporation improved the thermal stability of the films and provided excellent protection against
fruit-spoiling fungi. Because of their excellent barrier properties against fungal growth, water vapor
permeability, and ultraviolet and visible light, these AA/CWN/CNC/EO films have promising potential for
application as active food packaging or coating materials.

1 Introduction
Food packaging is traditionally based on polymers of petrochemical origin, such as polypropylene,
polyethylene, and polystyrene, owing to their low costs and well-established production. However, the non-
biodegradability of these materials has caused serious environmental problems. For this reason,
immense efforts are being made in the research and development of biodegradable films for food
packaging applications, with one new approach being the use of biopolymers extracted from food
sources (Mahcene et al. 2020).

Among the various biopolymers, starch is a good raw material for the production of edible and
biodegradable films because of its transparency, good gas barrier property, high availability, and low
production cost (Thakur et al. 2019). Arrowroot (Maranta arundinacea), an unconventional food species
native to Latin America, has a high amylose-based starch content in its rhizome. Amylose-rich starches
are an interesting resource for the production of biodegradable films with good mechanical properties
(Valadares et al. 2020). Although the hydrophilic nature of starch-based films makes them poor water
barriers (Thakur et al. 2019), this disadvantage can be minimized through the incorporation of
hydrophobic compounds, such as oils, fats, fatty acids, and waxes (e.g., carnauba wax) (Rodrigues et al.
2014; Syahida et al. 2020).

However, the addition of these compounds may create discontinuities in the film structure, negatively
affecting its optical, mechanical, and barrier properties (Syahida et al. 2020; Zhang et al. 2018). In recent
years, nanotechnology has been used as a new strategy for improving the properties of films (Espitia et
al. 2019). For example, the incorporation of a nanoemulsion of carnauba wax into arrowroot starch (AA)-
based films lowered the water vapor permeability, improved the transparency and tensile strength, and
smoothened the microstructure of the nanocomposites in comparison with those same features in films
made with a microemulsion of the wax (8). Thus, the formulation of starch-based films incorporated with
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lipid nanoemulsions is a promising approach for the development of new film materials with improved
properties.

Cellulose nanocrystals (CNCs), which are needle-like nanomaterials measuring 4–25 nm in diameter and
100–1000 nm in length (Jonoobi et al. 2015), have been proposed as a new strategy for improving the
mechanical and water barrier properties of new coating or film materials, reinforcing the biopolymer
matrix, and allowing the development of nanocomposite materials (Azeredo et al. 2012; Dai et al. 2020;
Pereda et al. 2014). Additionally, nanomaterials have low or no cytotoxic effects in humans and can
improve the stability of lipid compounds in emulsion-based systems via noncovalent physical adsorption
(Hubbe et al. 2017).

Moreover, other ingredients with biological properties can be added to nanocomposite films. Indeed,
nanoemulsion-based films and coatings have shown promise for transporting natural bioactive
compounds, such as essential oils (EOs) (Aswathanarayan and Vittal 2019), which are natural
antimicrobials and antioxidants valued for their safe, biodegradable, and non-toxic properties (Abdollahi
et al. 2013; Atarés and Chiralt 2016; Sánchez-González et al. 2011).

The objective of this study was to develop a novel functional material for food packaging applications.
To this end, we fabricated films based on an AA matrix, into which a carnauba wax nanoemulsion (CWN)
(to improve the water vapor barrier property), CNCs (to enhance the tensile properties), and EOs from a
green mint plant and palmarosa grass (to provide antifungal properties) were incorporated.
Characterization of the AA/CWN/CNC/EO nanocomposite properties revealed the films to be promising
materials for the primary packaging or coating of a variety of perishable food products, such as fresh
fruits, vegetables, breads, and cheeses.

2 Materials And Methods

2.1 Materials
The AA used as the film-forming matrix contained 13.24% water, 86.09% carbohydrate, 0.30% ash, 0.28%
protein, and 0.10% fat (as previously described by Oliveira Filho et al. (2020a)). Glycerol (99.5% purity;
CAS No.: 56-81-5; Alphatec Química Fina, Santo André, SP, Brazil) was used as the plasticizer. The CNCs,
which were obtained from Bionano (São Carlos, SP, Brazil), had an average length of 384 ± 102 nm and
diameter of 15 ± 2 nm (resulting in an aspect ratio of approximately 25.6) and a zeta potential value of − 
22.62 mV. Carnauba wax type I (99% purity; CAS No.: 8015-86-9) was provided by Pontes Indústria de
Cera (Parnaíba, PI, Brazil). Palm oleic acid (99% purity; CAS No.: 67701-08-0), dimethylpolysiloxane (99%
purity; CAS No.: 63148-62-9), and ammonium hydroxide (99% purity; CAS No.:1336-21-6) were purchased
from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). The EO of palmarosa grass (Cymbopogon
martinii) (CEO) was purchased from Laszlo Aromaterapia (Belo Horizonte, Brazil), whereas that of green
mint (Mentha spicata) (MEO) was purchased from Ferquima Ind. e Com. Ltda (Vargem Grande Paulista,
SP, Brazil). Using gas chromatography and mass spectrometry (QP-5000, Shimadzu, Columbia, MD, USA),
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13 chemical compounds were identified in CEO (total of 98.55%), including geraniol (83.82%), geranyl
acetate (7.49%), linalool (2.48%), and caryophyllene (1.33%), whereas 18 chemical compounds were
identified in MEO (total of 96.99%), including menthol (45.37%), menthone (20.13%), isomenthone
(16.94%), menthyl acetate (3.81%), pulegone (1.89%), α-terpinene (1.88%), isopulegol (1.83%),
neoisomenthol (1.19%), and α-terpineol (1.08%) (unpublished data). The fungi used for the antifungal
tests were Rhizopus stolonifer strain CCT 0276 and Botrytis cinerea strain CCT 1252 (Andre Tosello
Foundation, Campinas, SP, Brazil). All reagents used in this work were of analytical grade.

2.2 Carnauba wax nanoemulsion
The CWN (droplet size: 39.3 ± 0.7 nm; zeta potential: − 40.32 ± 1.0 mV) was prepared according to the
method described by Hagenmaier and Baker (1994) and adapted by Campos et al. (2019).
Characterization of the nanoemulsion was carried out as previously described in another study by our
group (Oliveira Filho et al. 2020a).

2.3 Film preparation
To prepare the films, CNCs and AA (5:95, w/w) were first dissolved in water, under agitation with a
magnetic stirrer (150 rpm) in a thermostatic bath (TE-2005, TECNAL, Piracicaba, Brazil) at 85 ± 2°C for 5
min, to produce a 2% (w/w) aqueous solution. Then, the CWN (15% on a dry starch basis) was added to
the aqueous mixture (Oliveira Filho et al. 2020a) and the suspension was homogenized. Thereafter,
glycerol was added as the plasticizer to a level of 0.17 mL/g AA.

After the dispersions had been cooled to 40°C, MEO or CEO was added at the concentrations of 0.1%,
0.2%, and 0.3% (v/v) and the mixtures were stirred on a high-speed mixer (UltraTurrax T25, IKA Werke
GmbH & Co, Staufen, Germany) for 5 min. The film-forming dispersions (25 mL) were cast on Petri dishes
(Ø12 cm) and dried at 35°C for 24 h, following which the resultant films were detached from the plates
and conditioned at ambient temperature (relative humidity (RH): 50%) for 48 h before analysis.

2.4 Film characterization

2.4.1 Thickness, moisture content, and water solubility
The film thickness and moisture content were measured using the methods described by Oliveira Filho et
al. (2020). The solubility of the films was measured as described by Kavoosi et al. (2014).

2.4.2 Water vapor permeability
The water vapor permeability (WVP) of the films was determined using the gravimetric method
(E96/E96M-16, 2016). In brief, the films were sealed in permeation cups (diameter: 35 mm) containing 6
mL of distilled water and placed in an air circulation oven (Solab SL-102, Piracicaba, SP, Brazil) at 40°C
with activated silica gel (RH: 0%). The cups were then weighed at least 10 times over the next 34 h. The
WVP (g∙mm∙h− 1∙cm− 2∙Pa− 1) was calculated according to Eq. (1):
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where m is the water loss from the permeation cup, A is the film sample area, t is the time of analysis, and
Δp is the difference in water vapor pressure between the inside and outside of the cup.

2.4.3 Tensile properties
The tensile properties of 50 mm × 10 mm film specimens (n = 10) was determined using the D882-12
method (ASTM, 2012). This analysis was performed using the TA.XTplus texture analyzer (Stable Micro
Systems, Surrey, UK) equipped with A/TG Tensile Grips and a 50 N load cell, with an initial grip separation
of 20 mm and a crosshead speed of 80 mm/min.

2.4.4 Thermogravimetric analysis
Thermal degradation profiles were obtained by thermogravimetric analysis (TGA), using a TGA Q500
analyzer (TA Instruments, New Castle, DE, USA) with heating from 10 to 600°C at a rate of 10°C/min and
a nitrogen flow rate of 40 mL/min. The percentage weight loss (%) and the first derivative of the TGA
curve (%/°C) were determined as a function of temperature.

2.4.5 Optical properties
The hue angle (h°), chroma (C*), and total color difference (ΔE*) were calculated using Eqs. (2) and (3),
respectively, on the basis of the L*, a*, and b* values (CIELAB color system) determined using a
colorimeter (HunterLab, Reston, VA, USA).

The film opacity, which was based on the fractional transmittance at 600 nm (T600) and film thickness (x,
mm), was calculated using Eq. (4) (Hamdi et al. 2019).

An ultraviolet–visible (UV–Vis) spectrophotometer (Shimadzu 1600, Portland, OR, USA) was used to
measure the optical barrier properties of the film against UV and visible light, with scanning carried out
between 250 and 800 nm.

2.4.6 Scanning electron microscopy
A scanning electron microscope (JEOL-JSM 6510 model, Jeol, Tokyo, Japan), set at an acceleration
voltage of 5 kV, was used to evaluate the microstructure of the films, as described previously (Oliveira
Filho et al. 2020a).
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2.4.7 In vitro antifungal activity
The antifungal activity of the films (diameter: 10 mm) against R. stolonifer and B. cinerea was evaluated
in vitro using the method described by Oliveira Filho et al. (2019). In brief, 100 µL of fungal spore
suspension (adjusted to 105 spores/mL) was cultured on potato dextrose agar plates. The sample films
were then placed over the fungal mat on the agar surface and the plates were incubated at 25°C for 72 h.
The result was expressed as the diameter of the zone of inhibition measured with a caliper.

2.5 Statistical analysis
The results are expressed as the average of three replicates (with triplicate analyses for each repetition) ± 
standard deviation. The data were analyzed using one-way analysis of variance followed by the Tukey
post hoc test, with statistical significance of differences set at p < 0.05.

3 Results And Discussion

3.1 Physical properties of the films
Table 1 shows the water-related properties of the films. The moisture contents varied from 7.03–7.89%,
with no significant difference arising from the incorporation of the CNCs, MEO, and CEO. As EOs are
hydrophobic in nature, it was expected that the moisture content of the films would be reduced. However,
this was not observed in the present work, probably as a result of the low concentrations of EOs tested.
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Table 1
Water-related properties of arrowroot starch-based films incorporated with a carnauba wax

nanoemulsion, cellulose nanocrystals, and essential oils
Film Moisture content (%) Solubility (%) WVP (10− 7 g H2O∙m− 1∙h− 1∙Pa− 1)

AA/CWN 7.89 ± 1.88 26.41 ± 2.93a 3.98 ± 0.25a

AA/CWN/CNC 7.42 ± 1.86 18.74 ± 2.33b 3.21 ± 0.12b

AA/CWN/CNC/MEO1* 7.03 ± 0.91 16.62 ± 2.61b 3.28 ± 0.15b

AA/CWN/CNC/MEO2 7.26 ± 1.16 14.23 ± 3.41bc 3.15 ± 0.18b

AA/CWN/CNC/MEO3 7.45 ± 1.45 12.10 ± 3.44c 2.92 ± 0.60b

AA/CWN/CNC/CEO1 7.09 ± 1.71 17.45 ± 2.43b 3.11 ± 0.26b

AA/CWN/CNC/CEO2 7.87 ± 2.57 14.92 ± 1.14bc 3.06 ± 0.38b

AA/CWN/CNC/CEO3 7.54 ± 0.70 12.60 ± 1.23c 2.97 ± 0.20b

AA: arrowroot starch; CWN: carnauba wax nanoemulsion; CNC, cellulose nanocrystals; MEO: Mentha
spica essential oil; CEO: Cymbopogon martini essential oil; WVP: water vapor permeability.

*Essential oils were added at the concentrations of 0.1% (MEO1 or CEO1), 0.2% (MEO2 or CEO2), or
0.3% (MEO3 or CEO3).

Values in the same column followed by at least one common letter (or not followed by any letters) are
not significantly different according to the Tukey test (p < 0.05).

The solubility of the films in water varied from 12.1–26.4%, decreasing significantly with the addition of
CNCs and increasing concentrations of either of the EOs. The reduction in water solubility of the AA-
based films following the incorporation of CNCs was a result of the formation of a three-dimensional
(3D) cellulose network through hydrogen bonding between the starch and CNC molecules. Three-
dimensional networks reduce the solubility of biopolymers, reinforcing the structure and restricting the
interactions between the polymer and water molecules (Noshirvani et al. 2018).

The reduction in water solubility of the films by the addition of the EOs was probably due to the
hydrophobic nature of these molecules and their low affinity to water molecules (Ma and Wang 2016).
The same observation has been reported for starch films incorporated with Syzygium aromaticum EO
(Sousa et al. 2019) and chitosan films incorporated with Citrus limonia EO (Oliveira Filho et al. 2020b).

The addition of CNCs to the AA/CWN film reduced its WVP (from 3.98 to 3.21 10− 7 g H2O∙m− 1∙h− 1∙Pa− 

1), similar to results reported in the literature (Abdollahi et al. 2013; Pereda et al. 2014; Sogut 2020).
According to El Miri et al. (2015), CNCs limit the mobility of water molecules through the film matrix,
resulting in a reduction in the WVP of the nanocomposite film.
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The incorporation of the various concentrations of CEO or MEO did not alter the WVP of the films. This
was similar to the results reported for whey protein films incorporated with oregano EO (Zinoviadou et al.
2009) and AA-based films incorporated with Piper aduncum EO (Valadares et al. 2020).

The addition of EOs was expected to reduce the WVP of the films owing to the hydrophobic nature of the
oils, as previously observed for the water solubility property (Table 1). However, because WVP is a
function of both solubility and diffusivity (Santos et al. 2014), the lack of a significant variation in the
WVP may be due to a concomitant increase in water molecule diffusivity resulting from discontinuities in
the matrix caused by the incorporated EO molecules (as shown by the scanning electron micrographs
discussed below).

3.2 Tensile properties of the films
The film thickness increased significantly with the addition of CNCs, CEO, and MEO, similar to the results
reported for films composed of whey protein isolate, CNCs, and bergamot EO (Sogut 2020) and those
made up of chitosan, CNCs, and palm oil (Pereda et al. 2014). The increase in thickness of the films may
be related to the increase in the amount of solids present in the nanocomposites (de Souza Coelho et al.
2020), with differences in homogeneity within the biopolymer matrices, and could also be due to
interactions between the components used in the formulation of the nanocomposites (Sogut 2020).

The stress properties of the films are listed in Table 2. The incorporation of CNCs increased the tensile
strength of the AA/CWN film from 3.0 to 5.3 MPa. This increase can be due to interactions between the
CNCs and starch molecules and the reinforcement effect from voltage transference at the CNC–starch
interface (de Mesquita et al. 2010; Khan et al. 2012). These interactions strengthen the 3D network of the
nanocomposite film by creating nanofillers, which improve the mechanical properties of the film and limit
the movement of the biopolymer chains (Jouyandeh et al. 2019).
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Table 2
Tensile properties and thermal properties of arrowroot starch-based films incorporated with a carnauba

wax nanoemulsion, cellulose nanocrystals, and essential oils
Film Thickness

(mm)
Tensile strength
(MPa)

Elongation at
break (%)

Tonset
(°C)

Tmax
(°C)

AA/CWN 0.134 ± 
0.022c

3.00 ± 0.60c 247.5 ± 32.8a 272.5 314.3

AA/CWN/CNC 0.147 ± 
0.310b

5.30 ± 0.68a 125.7 ± 42.1b 271.8 313.4

AA/CWN/CNC/MEO1 0.166 ± 
0.040a

4.25 ± 0.40b 123.6 ± 39.9b 276.9 316.4

AA/CWN/CNC/MEO2 0.182 ± 
0.140a

4.17 ± 0.53b 122.5 ± 23.1b 280.9 317.5

AA/CWN/CNC/MEO3 0.188 ± 
0.007a

4.06 ± 0.35b 117.3 ± 47.7b 293.1 317.8

AA/CWN/CNC/CEO1 0.168 ± 
0.017a

4.28 ± 0.49b 133.2 ± 61.9b 275.8 315.8

AA/CWN/CNC/CEO2 0.162 ± 
0.034a

4.07 ± 0.29b 118.1 ± 39.3b 278.9 316.4

AA/CWN/CNC/CEO3 0.173 ± 
0.006a

4.23 ± 0.69b 106.7 ± 7.73b 286.8 317.3

AA: arrowroot starch; CWN: carnauba wax nanoemulsion; CNC, cellulose nanocrystals; MEO: Mentha
spica essential oil; CEO: Cymbopogon martini essential oil; Tonset: starting decomposition
temperature; Tmax: maximum decomposition temperature.

*Essential oils were added at the concentrations of 0.1% (MEO1 or CEO1), 0.2% (MEO2 or CEO2), or
0.3% (MEO3 or CEO3).

Values of thickness, tensile strength, and elongation at break in the same column followed by at least
one common letter are not significantly different according to the Tukey test (p < 0.05).

The tensile strength of the films with EOs incorporated was lower than that of the AA/CWN/CNC film.
However, all films were superior in tensile strength to the control film (AA/CWN without CNCs and EOs).
The changes in the mechanical properties were likely due to the presence of discontinuities in the polymer
matrix caused by the EO molecules (Atarés and Chiralt 2016), corroborating the film structures seen in the
scanning electron micrographs and the theory of an increase in diffusivity as being responsible for the
non-reduction in WVP (Table 1). Thus, EOs increase the extensibility, flexibility, and mobility of films and
decrease their cohesive strength (Mahcene et al. 2020). Whereas the elongation at break was significantly
reduced from 247–125.7% with the addition of CNCs, it was not affected by the addition of EOs. The
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CNC-mediated increase in tensile strength and reduction in elongation at break of the films have also
been reported by other authors (Dai et al. 2020; de Souza Coelho et al. 2020; Yadav et al. 2016).

3.3 Thermogravimetric analysis
Figure 1 shows the TGA curves and their first derivatives. The starting and maximum decomposition
temperatures (Tonset and Tmax) are shown in Table 2. Weight loss of the samples occurred in three major
stages. The first stage occurred during the temperature range of 25–250°C and was related to the
evaporation of water molecules (52–92°C), glycerol (200–250°C), and other volatile low-molecular-weight
components. The second stage occurred between 270 and 350°C and was related to the thermal
degradation of starch and CNCs, which occur at similar temperatures (Rico et al. 2016). The last stage
occurred from 350 to 490°C (Freitas et al. 2016; Milanovic 2010) and was caused by the degradation of
CWN and thermally stable compounds present in the EOs (Alizadeh et al. 2017; Sousa et al. 2019).

The films with MEO and CEO incorporated showed higher Tmax values than the other films, indicating that
the addition of these oils had improved the thermal stability of the nanocomposites (Table 2). These
results were corroborated by other studies that showed that the improvement in thermal properties led to
the higher homogeneity observed in the biopolymer matrix (Noshirvani et al. 2017; Sousa et al. 2019).

3.4 Optical properties
The optical properties of the films are listed in Table 3. The incorporation of EOs and CNCs did not
change the L* parameter (luminosity) of the films. Moreover, the hue values ranged from 89.34° to 90.30°
(between red and yellow), indicating that the films were yellow in color (Table 3).
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Table 3
Color attributes and opacity of arrowroot starch-based films incorporated with a carnauba wax

nanoemulsion, cellulose nanocrystals, and essential oils
Film L* h° C* Opacity

AA/CWN 80.49 ± 0.99 89.88 ± 0.67 16.96 ± 1.85a 1.22 ± 0.01h

AA/CWN/CNC 81.89 ± 0.27 89.53 ± 0.59 13.75 ± 0.22b 2.01 ± 0.03g

AA/CWN/CNC/MEO1 81.03 ± 0.91 89.52 ± 0.31 14.32 ± 2.09b 2.54 ± 0.02d

AA/CWN/CNC/MEO2 81.53 ± 0.83 90.11 ± 0.46 15.15 ± 0.76a 2.63 ± 0.02c

AA/CWN/CNC/MEO3 81.31 ± 0.22 89.34 ± 0.19 16.46 ± 0.20a 2.70 ± 0.01b

AA/CWN/CNC/CEO1 81.92 ± 0.60 90.23 ± 0.41 13.74 ± 1.63b 2.27 ± 0.02f

AA/CWN/CNC/CEO2 81.58 ± 0.34 90.21 ± 0.46 15.91 ± 1.31a 2.45 ± 0.03e

AA/CWN/CNC/CEO3 81.58 ± 0.28 90.30 ± 0.25 16.07 ± 0.65a 2.99 ± 0.01a

AA: arrowroot starch; CWN: carnauba wax nanoemulsion; CNC, cellulose nanocrystals; MEO: Mentha
spica essential oil; CEO: Cymbopogon martini essential oil; L*: luminosity; h°: hue angle; C*: chroma.

*Essential oils were added at the concentrations of 0.1% (MEO1 or CEO1), 0.2% (MEO2 or CEO2), or
0.3% (MEO3 or CEO3).

Values in the same column followed by at least one common letter (or not followed by any letters) are
not significantly different according to the Tukey test (p < 0.05).

The C* value decreased with the addition of CNCs, indicating that the nanocrystals lowered the color
intensity of the films. By contrast, the value increased with the addition of 0.2% and 0.3% EOs, indicating
that the oils made the film coloring more intense. Similar phenomena have been reported for agar films
(Shankar et al. 2015) and starch films (de Souza Coelho et al. 2020). In another study, the yellowish
coloration of corn and wheat starch films was attributed to the lemon EO added (Song et al. 2018).

The addition of CWN, CNCs, and EOs decreased the transparency of the AA-based films. The opacity
values increased from the AA/CWN film to the AA/CWN/CNC/MEO3 and AA/CWN/CNC/CEO3 films (1.22
to 2.70 and 2.99, respectively). This increase may be due to the strong interaction between the CNCs and
the starch matrix as well as light scattering by the nanocrystals (Li et al. 2018).

The increased opacity could also be due to the hinderance of light passage through the film as a result of
CNC accumulation within the matrix (Abdollahi et al. 2013), as evidenced by the CNC aggregates
observed in the scanning electron micrographs (Fig. 2). Similar results have been reported by other
authors (de Souza Coelho et al. 2020; Thomas et al. 2020). Meanwhile, the decrease in film transparency
caused by the addition of EOs was probably due to the dispersion of light by the oil droplets in the film
matrix, as previously described for other films (Oliveira Filho et al. 2019; Sousa et al. 2019).
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Figure 3 shows the light transmission rate of the films. All of the fabricated films were found to be strong
barriers against UV light (200–350 nm) not exceeding 0.1%; that is, they provided a 100% barrier to UV
light. In the visible light region (380–780 nm), the light transmission rate of the control film (AA/CWN)
was 24.0–65.4%, but this decreased to a range of 26.0–55.9% in the AA/CWN/CNC film. The addition of
EOs also caused a slight reduction in light transmittance rates compared with that of the AA/CWN/CNC
film (Fig. 3). The best light barrier performance was observed for films incorporated with CNCs and EOs
at the highest concentration (0.3%), which was due to the increased opacity (reported in Table 3).
Reductions in the UV–Vis light transmission rate have also been observed for chitosan films incorporated
with Citrus limonia EO (Oliveira Filho et al. 2020b) and potato starch films incorporated with CNCs
(Oliveira et al. 2017). Therefore, AA/CWN/CNC films with MEO or CEO can be used as food packaging
materials, as they have excellent light barrier function.

3.5 Characterization of the film microstructures
Figure 2 shows the surface and cross-sectional microstructures of the AA-based films containing CWN,
reinforced with CNCs, and supplemented with MEO or CEO. The AA/CWN film had a dense and regular
surface with some lipid clusters present. In the film containing CNCs, the surface was rougher and more
opaque, which was attributed to the nanocrystal aggregates, as observed in other studies on starch films
containing CNCs (Johar and Ahmad 2012; Silva et al. 2019). None of the films had obvious cracks or
discontinuities in their microstructures, and the addition of CNCs positively impacted the traction and
barrier properties of the films (Tables 1–3).

As shown in Fig. 2, compared with the AA/CWN/CNC film, the films with EOs had lower amounts of CNC
aggregates and regular and compact structures, probably as a result of the uniform distribution of the
droplets within the emulsion and good compatibility between the matrices. These characteristics
indicated that the emulsion was stable and there was no phase separation or droplet aggregation during
the preparation and drying of the films. This may have been due to interactions between the CNCs and
EOs that electrostatically stabilized the oil droplets, giving rise to Pickering emulsions (Zhang et al. 2017;
Zhou et al. 2018).

With higher concentrations of EOs in the films, the microstructure of the cross-sections was slightly
heterogeneous and less compact, with some holes in the films (especially with 0.3% EOs, as a result of
the oil droplets (Pastor et al. 2013; Zhou et al. 2018)). The characteristics of oil droplets in a Pickering
emulsion can affect the immobilization of the emulsion (Ribeiro-Santos et al. 2017). Overall, the findings
of the film microstructure corroborated the results previously described for the properties that were
improved with the addition of CNCs and EOs.

3.6 Antifungal activity
Table 4 shows the antifungal activities of the films against R. stolonifer and B. cinerea. As expected, the
AA/CWN and AA/CWN/CNC films did not show antifungal activity against the two fungi studied,
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corroborating previous results obtained with films based on starch, waxes, and nanocellulose (Ochoa et
al. 2017; Raigond et al. 2019; Salmieri et al. 2014).

Table 4
Antifungal activity of arrowroot-based films incorporated with a carnauba wax nanoemulsion, cellulose

nanocrystals, and essential oils
Film Diameter of inhibition zone (mm)

Rhizopus stolonifer Botrytis cinerea

AA/CWN 0.0 ± 0.0e 0.0 ± 0.0f

AA/CWN/CNC 0.0 ± 0.0e 0.0 ± 0.0f

AA/CWN/CNC/MEO1 16.0 ± 1.0d 19.0 ± 0.7e

AA/CWN/CNC/MEO2 20.8 ± 1.1c 25.9 ± 2.0d

AA/CWN/CNC/MEO3 25.2 ± 2.0b 33.7 ± 1.6b

AA/CWN/CNC/CEO1 18.7 ± 0.7c 24.3 ± 0.8d

AA/CWN/CNC/CEO2 24.1 ± 1.6b 30.4 ± 0.6c

AA/CWN/CNC/CEO3 29.8 ± 0.8a 36.3 ± 0.7a

AA: arrowroot starch; CWN: carnauba wax nanoemulsion; CNC, cellulose nanocrystals; MEO: Mentha
spica essential oil; CEO: Cymbopogon martini essential oil.

*Essential oils were added at the concentrations of 0.1% (MEO1 or CEO1), 0.2% (MEO2 or CEO2), or
0.3% (MEO3 or CEO3).

Values in the same column followed by at least one common letter are not significantly different
according to the Tukey test (p < 0.05).

By contast, the films with EOs incorporated showed obvious antifungal activity that was directly
proportional to the EO concentration used. The diameters of the inhibition zones against R. stolonifer
increased from 16.0 to 25.2 mm for films with MEO and from 18.7 to 29.8 mm for films with CEO. Those
against B. cinerea increased from 19.0 to 33.7 mm for films with MEO and from 24.3 to 29.8 mm for
films with CEO. Thus, B. cinerea was more sensitive than R. stolonifer to the EOs studied. The antifungal
effect of MEO is related to its chemical composition, mainly of carvone, which has high antimicrobial
activity (Soković et al. 2009). By contrast, the antifungal activity of CEO is related to the synergistic
effects of its major compounds: geraniol, linalool, neral, and mirceno (da Rocha Neto et al. 2019). Taken
together, these results confirmed that MEO and CEO act as antifungal agents. Therefore, these EOs in
combination with a film composed of AA, CWN, and CNCs provide a functional film material.

4 Conclusions
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The incorporation of CNCs into an AA-based matrix increased the thickness and tensile strength and
decreased the WVP of the AA/CWN/CNC film. Furthermore, the addition of CNCs with or without EOs
decreased the transparency of the films and improved their visible light barrier property. Additionally, the
incorporation of EOs improved the thermal stability of the films. The microstructure of the films was
affected by the CNCs, becoming rougher and more opaque. The addition of EOs provided the films with
excellent antifungal activity against post-harvest fruit-spoiling fungi. Overall, films composed of AA, CWN,
CNCs, and MEO or CEO were excellent barriers against WVP, UV light, and fungal growth. Thus, the
AA/CWN/CNC/MEO and AA/CWN/CNC/CEO nanocomposite films represent novel materials with
potential application as active packaging materials or coatings for fresh fruits and vegetables as well as
for other food products that are easily spoiled by surface fungal growth, such as breads and cheeses.
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Figure 1

Thermogravimetric analysis (TGA) (A) and derivative thermogravimetry (DTG) (B) curves of arrowroot-
based films (AA) with carnauba wax nanoemulsion (CWN) reinforced with cellulose nanocrystals (CNC)
and supplemented with Mentha spicata and Cymbopogon martini essential oils (MEO and CEO,
respectively) in concentrations of 0.1% (MEO1 or CEO1), 0.2% (MEO2 or CEO2), or 0.3% (MEO3 or CEO3)

Figure 2

The light transmission rate of films. The formulation codes refer to the main components, namely: AA,
arrowroot starch; CWN: carnauba wax nanoemulsion; CNC: cellulose nanocrystals; MEO1: Mentha spicata
essential oil at 0.1%; MEO2: Mentha spicata essential oil at 0.2%; MEO3: Mentha spicata essential oil at
0.3%; CEO1: Cymbopogon martini essential oil at 0.1%; CEO2: Cymbopogon martini essential oil at 0.2%;
CEO3: Cymbopogon martini essential oil at 0.3%.
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Figure 3

SEM micrographs (1000x magnification) of arrowroot-based films (AA) with carnauba wax nanoemulsion
(CWN) reinforced with cellulose nanocrystals (CNC) and supplemented with Mentha spicata and
Cymbopogon martini essential oils (MEO and CEO, respectively) in concentrations of 0.1% (MEO1 or
CEO1), 0.2% (MEO2 or CEO2), or 0.3% (MEO3 or CEO3)


