1 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England journal of medicine 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
2 Gorbalenya, A. E. et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology 5, 536-544, doi:10.1038/s41564-020-0695-z (2020).
3 Wolfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature, doi:10.1038/s41586-020-2196-x (2020).
4 Thevarajan, I. et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature medicine 26, 453-455, doi:10.1038/s41591-020-0819-2 (2020).
5 Hadjadj, J. et al. Impaired type I interferon activity and exacerbated inflammatory responses in severe Covid-19 patients. medRxiv, 2020.2004.2019.20068015, doi:10.1101/2020.04.19.20068015 (2020).
6 Qin, C. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, doi:10.1093/cid/ciaa248 (2020).
7 Wang, F. et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. The Journal of infectious diseases, doi:10.1093/infdis/jiaa150 (2020).
8 Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45-56, doi:10.1038/s41586-019-1593-5 (2019).
9 Mastellos, D. C., Ricklin, D. & Lambris, J. D. Clinical promise of next-generation complement therapeutics. Nature reviews. Drug discovery 18, 707-729, doi:10.1038/s41573-019-0031-6 (2019).
10 Pio, R., Ajona, D., Ortiz-Espinosa, S., Mantovani, A. & Lambris, J. D. Complementing the Cancer-Immunity Cycle. Frontiers in immunology 10, 774, doi:10.3389/fimmu.2019.00774 (2019).
11 Shi, Y. et al. COVID-19 infection: the perspectives on immune responses. Cell death and differentiation 27, 1451-1454, doi:10.1038/s41418-020-0530-3 (2020).
12 Hammer, Q., Ruckert, T. & Romagnani, C. Natural killer cell specificity for viral infections. Nature immunology 19, 800-808, doi:10.1038/s41590-018-0163-6 (2018).
13 Schmidt, M. E. & Varga, S. M. The CD8 T Cell Response to Respiratory Virus Infections. Frontiers in immunology 9, 678, doi:10.3389/fimmu.2018.00678 (2018).
14 Xin Yu, J. et al. Trends in clinical development for PD-1/PD-L1 inhibitors. Nature reviews. Drug discovery 19, 163-164, doi:10.1038/d41573-019-00182-w (2020).
15 Andre, P. et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell 175, 1731-1743 e1713, doi:10.1016/j.cell.2018.10.014 (2018).
16 Perrot, I. et al. Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive Pathway Unleash Immune Responses in Combination Cancer Therapies. Cell reports 27, 2411-2425 e2419, doi:10.1016/j.celrep.2019.04.091 (2019).
17 Sun, C., Mezzadra, R. & Schumacher, T. N. Regulation and Function of the PD-L1 Checkpoint. Immunity 48, 434-452, doi:10.1016/j.immuni.2018.03.014 (2018).
18 de Andrade Mello, P., Coutinho-Silva, R. & Savio, L. E. B. Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor-Host Interaction and Therapeutic Perspectives. Frontiers in immunology 8, 1526, doi:10.3389/fimmu.2017.01526 (2017).
19 Guzman, J. et al. Phenotypic analysis of bronchoalveolar lavage lymphocytes from acquired immunodeficiency patients with and without Pneumocystis carinii pneumonia. Acta cytologica 36, 900-904 (1992).
20 Eltzschig, H. K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. The Journal of experimental medicine 198, 783-796, doi:10.1084/jem.20030891 (2003).
21 Dierks, P. et al. Brief Report: Increased Frequency of CD39+ CD56bright Natural Killer Cells in HIV-1 Infection Correlates With Immune Activation and Disease Progression. J Acquir Immune Defic Syndr 74, 467-472, doi:10.1097/QAI.0000000000001266 (2017).
22 Seshadri, A. et al. Altered monocyte and NK cell phenotypes correlate with posttrauma infection. The journal of trauma and acute care surgery 87, 337-341, doi:10.1097/TA.0000000000002264 (2019).
23 Csoka, B. et al. CD39 improves survival in microbial sepsis by attenuating systemic inflammation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 29, 25-36, doi:10.1096/fj.14-253567 (2015).
24 Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nature communications 9, 2724, doi:10.1038/s41467-018-05072-0 (2018).
25 Canale, F. P. et al. CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8(+) T Cells. Cancer research 78, 115-128, doi:10.1158/0008-5472.CAN-16-2684 (2018).
26 Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. The Journal of experimental medicine 204, 1257-1265, doi:10.1084/jem.20062512 (2007).
27 Pesce, S. et al. PD/1-PD-Ls Checkpoint: Insight on the Potential Role of NK Cells. Frontiers in immunology 10, 1242, doi:10.3389/fimmu.2019.01242 (2019).
28 Guma, M. et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104, 3664-3671, doi:10.1182/blood-2004-05-2058 (2004).
29 Zheng, M. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular & molecular immunology, doi:10.1038/s41423-020-0402-2 (2020).
30 Liao, M. et al. The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing. medRxiv, 2020.2002.2023.20026690, doi:10.1101/2020.02.23.20026690 (2020).
31 Young, A., Mittal, D., Stagg, J. & Smyth, M. J. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer discovery 4, 879-888, doi:10.1158/2159-8290.CD-14-0341 (2014).
32 Lee, J., Ahn, E., Kissick, H. T. & Ahmed, R. Reinvigorating Exhausted T Cells by Blockade of the PD-1 Pathway. Forum on immunopathological diseases and therapeutics 6, 7-17, doi:10.1615/ForumImmunDisTher.2015014188 (2015).
33 Liu, J. et al. Neutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage. medRxiv, 2020.2002.2010.20021584, doi:10.1101/2020.02.10.20021584 (2020).
34 Guo, R. F., Riedemann, N. C. & Ward, P. A. Role of C5a-C5aR interaction in sepsis. Shock 21, 1-7, doi:10.1097/01.shk.0000105502.75189.5e (2004).
35 Bosmann, M. & Ward, P. A. Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. Advances in experimental medicine and biology 946, 147-159, doi:10.1007/978-1-4614-0106-3_9 (2012).
36 Riedemann, N. C. et al. Increased C5a receptor expression in sepsis. The Journal of clinical investigation 110, 101-108, doi:10.1172/JCI15409 (2002).
37 Riedemann, N. C. et al. Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. J Immunol 170, 503-507, doi:10.4049/jimmunol.170.1.503 (2003).
38 Huber-Lang, M. S. et al. Protective effects of anti-C5a peptide antibodies in experimental sepsis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 15, 568-570, doi:10.1096/fj.00-0653fje (2001).
39 Gao, T. et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv, 2020.2003.2029.20041962, doi:10.1101/2020.03.29.20041962 (2020).
40 Wang, R., Xiao, H., Guo, R., Li, Y. & Shen, B. The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerging microbes & infections 4, e28, doi:10.1038/emi.2015.28 (2015).
41 Bjornson, A. B., Mellencamp, M. A. & Schiff, G. M. Complement is activated in the upper respiratory tract during influenza virus infection. The American review of respiratory disease 143, 1062-1066, doi:10.1164/ajrccm/143.5_Pt_1.1062 (1991).
42 Sun, S. et al. Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection. American journal of respiratory cell and molecular biology 49, 221-230, doi:10.1165/rcmb.2012-0428OC (2013).
43 Jiang, Y. et al. Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerging microbes & infections 7, 77, doi:10.1038/s41426-018-0063-8 (2018).
44 Sun, S. et al. Treatment with anti-C5a antibody improves the outcome of H7N9 virus infection in African green monkeys. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 60, 586-595, doi:10.1093/cid/ciu887 (2015).
45 Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nature immunology 3, 196-200, doi:10.1038/ni758 (2002).
46 Gerard, N. P. et al. An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. The Journal of biological chemistry 280, 39677-39680, doi:10.1074/jbc.C500287200 (2005).
47 Fattahi, F. & Ward, P. A. Complement and sepsis-induced heart dysfunction. Molecular immunology 84, 57-64, doi:10.1016/j.molimm.2016.11.012 (2017).
48 Tan, S. M. et al. Complement C5a Induces Renal Injury in Diabetic Kidney Disease by Disrupting Mitochondrial Metabolic Agility. Diabetes 69, 83-98, doi:10.2337/db19-0043 (2020).
49 Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet, doi:10.1016/S0140-6736(20)30937-5 (2020).
50 Ai, T. et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 200642, doi:10.1148/radiol.2020200642 (2020).
51 Amrane, S. et al. Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infectious diseases referral hospital in Marseille, France, - January 31st to March 1st, 2020: A respiratory virus snapshot. Travel medicine and infectious disease, 101632, doi:10.1016/j.tmaid.2020.101632 (2020).
52 Xiong, Y. et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerging microbes & infections 9, 761-770, doi:10.1080/22221751.2020.1747363 (2020).
53 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21, doi:10.1093/bioinformatics/bts635 (2013).
54 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930, doi:10.1093/bioinformatics/btt656 (2014).
55 Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127, doi:10.1093/biostatistics/kxj037 (2007).
56 Crinier, A. et al. High-Dimensional Single-Cell Analysis Identifies Organ-Specific Signatures and Conserved NK Cell Subsets in Humans and Mice. Immunity 49, 971-986 e975, doi:10.1016/j.immuni.2018.09.009 (2018).
57 Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nature methods 12, 453-457, doi:10.1038/nmeth.3337 (2015).
58 Carpentier, S., Romagne, F. & Vivier, E. A comprehensive approach to gene expression profiling in immune cells. Methods in enzymology 636, 1-47, doi:10.1016/bs.mie.2019.07.005 (2020).
59 Roumenina, L. T., Daugan, M. V., Petitprez, F., Sautes-Fridman, C. & Fridman, W. H. Context-dependent roles of complement in cancer. Nature reviews. Cancer 19, 698-715, doi:10.1038/s41568-019-0210-0 (2019).