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Abstract
Fusarium, one of the main fungal pathogens, can infect field crops and cause great economic loss. This
paper concerns a research on the antifungal activity of camphor. In our study, an assessment was made
on the antifungal activity of camphor against four common phytopathogens: Fusarium oxysporum G5, F.
solani G9, F. verticillioide, and F. graminearum. The method adopted was mycelial growth inhibition. The
minimum inhibitory concentrations (MIC) of camphor against the four tested fungi were 4.0, 4.0, 4.0, and
2.0 mg/mL, and the half maximal inhibitory concentrations (IC50) were 2.0, 2.0, 2.0, and 1.0 mg/mL,
respectively. The paper proper also involves an investigation the, fungicidal mechanisms via cell
membrane permeability, proteins and nucleic acids leakage and scanning electron microscopy. The
results of preliminary antifungal mechanism revealed that camphor can cause cytomembrane
destruction, enhancing the permeability of cytomembrane and releasing intracellular macromolecules,
such as nucleic acids and proteins. Supposedly, the results suggested that the cytomembrane may be the
target of camphor. In addition, these outcomes indicated that camphor can exhibit pronounced fungicidal
activities against the four tested fungi and could be a promising alternative for the control of
phytopathogenic Fusarium.  

Highlights
Camphor can significantly inhibit the growth of phytopathogenic Fusarium.

Camphor can disrupt the permeability and integrity of Fusarium cytomembrane.

Camphor may inhibit the growth of Fusarium at several different levels.

Camphor can be used as an alternative to against phytopathogenic Fusarium.

Introduction
Fusarium is one of the dominant phytopathogens causing serious crop wilt, stem rot, root rot and other
soil-borne diseases (Bodah 2017). Many kinds of crops, such as corn, wheat and other cereals, are
extremely susceptible to Fusarium species. As grain contaminants, they have a wide distribution and may
cause farmers to sustain significant economic losses (Munkvold 2003; Kazan et al., 2012). Meanwhile,
during their growth, they can metabolize some mycotoxins seriously harming the health of animals and
humans, such as deoxynivalenol (DON) and zearalenone (ZEN) (Matny 2015). F. oxysporum, F. solani, F.
verticillioide and F. graminearum are common phytopathogen species belonging in Fusarium genus, and
they can cause many crop diseases. In particular, F. oxysporum, with a worldwide distribution of soil-
borne fungal pathogen, can infect and cause diseases to over 120 different plant species including
tomatoes, bananas and cotton (Fravel et al. 2003). F. graminearum is the key pathogen causing head
blight and crown rot (Liu et al. 2015; Goswami and Kistler 2004), while F. verticillioide is the main cause
of maize ear rot (Chulze et al. 2000).
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In the production of industrial crops, the approach to control Fusarium diseases is to choose Fusarium-
resistant cultivars or to apply chemical pesticides (Ferrigo et al. 2016). However, excessive and long-term
application of chemically synthesized fungicides will not only cause resistance of phytopathogen, but
also lead to soil and environmental pollution. Worse is that they may pose potential safety issues of food
raw materials (Lee et al. 2014; Yang et al. 2018). In recent years, the discovery of efficient, green and safe
natural fungicides from plants has attracted extensive attention, among which the volatile substances
and alkaloids (such as matrine and oxymatrine) from plants are the hotspots (Yang and Zhao 2006;
Andrade et al. 2014; Hu et al. 2014; Harkat-Madouri et al. 2015; Moss et al. 2017). Citrus essential oils
consisting mainly of monoterpene hydrocarbons are widely used as fungicides in foodstuff and
pharmaceutical industries (Jing et al. 2014).

Camphor (C10H16O, 1,7,7-trimethylbicyclo[2.2.1]-2-heptanone), a kind of bicyclic monoterpenoids, widely
exists in some aromatic plants, such as Cinnamomum camphora, Eucalyptus globulus and Artemisia
annua. It is the main component in the majority of plant essential oils (Green 1990). Previous
investigations reported that camphor has been in use in medicine and cosmetics (Xiong et al. 2009). The
insecticidal and insect-expelling efficacy of camphor has been widely confirmed (Moss et al. 2017; Guo et
al. 2016). However, as a main component of some essential oils, whether it has promising antimicrobial
activity needs further exploitation. To our knowledge, there are limited studies on the antifungal activity of
camphor against the common and dominant phytopathogenic Fusarium. Therefore, the aim of this work
is to evaluate the effects of camphor on the phytopathogenic fungi species of F. oxysporum G5, F. solani
G9, F. verticillioide and F. graminearum on the bases of the in vitro growth capacity of fungal mycelium,
changes of cytomembrane permeability, leakage of intracellular compounds, and the morphology of
hypha.

Materials And Methods
Fungal strains, culture media and conditions

Four plant pathogenic fungi species, F. oxysporum G5, F. solani G9 and F. verticillioide were obtained from
the Laboratory of Microbial Resources and Technology, College of Life Sciences, Northwest Normal
University. F. graminearum CICC 2697 was purchased from the China Center of Industrial Culture
Collection. The fungi were cultured on potato dextrose agar (PDA) medium (200 g/L potato, 20 g/L
dextrose and 15 g/L agar in distilled water) in a 90 mm diameter Petri dish at 28 ℃ for approximate 8
days in an incubator.

Chemicals

Camphor (analytical grade) was purchased from Tianjin Guangfu Fine Chemical Research Institute
(Tianjin, China). Tween-80 was supplied from Yantai Shuangshuang Chemical Co. (Yantai, China).
Dimethyl sulfoxide (DMSO) was purchased from Shanghai Zhongqin Chemical Reagent Co. (Shanghai,
China). All other reagents used in this work are all analytical pure except for special instructions.
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Measurement of antifungal activity

The antifungal activity of camphor was detected by the method of mycelial growth inhibitory with some
modifications (Irzykowska et al. 2013). Briefly, the appropriate volume of the stock solution (sterilized by
a 0.22 μm organic filter) of camphor dissolved in dimethylsulfoxide (DMSO) was thoroughly mixed with a
certain amount of unsolidified and sterilized PDA medium, and then it was poured into a Petri dish to
prepare a series of gradient concentration plates (0.125, 0.25, 0.5, 1.0, 2.0, and 4.0 mg/mL). Equal
amount of DMSO mixed with PDA was adopted as the control medium. A 7-mm diameter mycelial disc of
the four phytopathogenic fungi (F. oxysporum G5, F. solani G9 and F. verticillioide and F. graminearum
CICC 2697) was punched from PDA culture and inoculated onto the centre of the Petri dish, respectively.
The inoculum was cultivated in a light-free incubator at 28 ℃ for 8 days. The mycelial growth
momentum of the four phytopathogenic fungi was evaluated according to the cross section method once
every 24 h until the 8th day. The growth curve of the fungi was represented by a line graph. Each set of the
experiments was in triplicate.

Determination of cell membrane permeability

The changes of membrane permeability of the fungal mycelium treated with camphor were detected by
the method reported previously with slight modifications and expressed as relative electric conductivity
(REC) (Zhang et al. 2016). To be brief, the vigorous mycelial disks (7 mm) of the four Fusarium strains
were inoculated in 100 mL of potato dextrose (PD) liquid medium and they were kept shaking for 3 days
at 200 rpm and 28 ° C, respectively. After incubation, the cultures were filtered with filter paper to obtain
hypha samples under aseptic condition. The samples were thoroughly rinsed with sterile distilled water,
and then the samples were prepared after being filtered again. The fresh mycelial sample (1.0 g) was
added into 100 mL aqueous solution containing 1.0 and 2.0 mg/mL of camphor, and 0.2% Tween-80,
respectively. The electric conductivity of the mixture was marked as L1. The mixture without addition of
camphor was used as a control. The electric conductivity was assayed with a conductivity meter (AZ-
8362, Taiwan, China) respectively at 1, 2, 4, 8, 12, 24, and 48 h and marked as L2. In addition, the electric
conductivity of the control prepared with boiled water for 30 min was remarked as L0. The permeability of
fungal cytomembrane was calculated and expressed as the following equation (1):

Relative electric conductivity (REC, %) = 100% × (L2-L1)/L0 (1)

Detection of intracellular macromolecules leakage

As described in section 2.4, the leakage of intracellular macromolecules (nucleic acid and protein) from
the fungal mycelium was detected according to Ma et al. (2017). After the mixtures were incubated at 28
℃ for 48 h, 10 mL of the culture was collected and centrifuged at 5000 rpm for 10 min and the
absorbances of nucleic acids and proteins in supernatant were determined by a UV-3600
spectrophotometer (Shimadzu, Japan) at 260 nm and 280 nm, respectively (Luo et al. 2014).

Scanning electron microscopic observation of mycelia morphology
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After treatment with camphor for 48h, the hyphae were immobilized with 2.5% glutaraldehyde buffer, and
refrigerated overnight at 4 ℃. They were then rinsed with 0.1mol/L PBS for three times, and the samples
were dehydrated and replaced in anhydrous ethanol solution with concentrations of 30%, 50%, 70%, 80%,
90%, 100% in turn. The dehydration time was 10min and 15min each time. Then it was solidified
overnight in a freezer. Finally, the samples were sprayed with gold and their morphology was observed
using a JSM-5600LV scanning electron microscope (SEM, JEOL, Japan).

Statistical analysis

All cultivation and determination were performed in triplicate. The results from each experimental group
were expressed as mean ± standard deviation. SPSS software (17.0, USA) was employed to analyze the
significant difference between the groups at the level of 0.05.

Results
Efficacy of antifungal activity

The antifungal activities of camphor against the four plant pathogens Fusarium are shown in Table 1,
Fig. 1 and Fig. 2. As can be seen from Fig. 1, significant differences begin to appear among the groups
from the third day. With the extension of culture time and the increase of camphor concentration, the
inhibitory effect of camphor on the growth of four tested fungi species gradually increases. When the
concentration of camphor added was 2 mg/mL, none of the four tested Fusarium strains grow normally.
Moreover, the sensitivity of different strains to camphor is different. For example, as can be seen from the
growth graphs, F. graminearum shows strongest sensitivity to camphor. The results show that camphor
has a strong inhibitory effect on the growth of the four tested plant pathogens, and the effect is
concentration-dependent.

Fig. 2 shows the growth status of the four plant pathogens Fusarium after 8 days of cultivation. F.
oxysporum G5，F. solani G9 and F. verticillioide do not show growth on PDA + 4 mg/mL camphor. F.
graminearum fails to grow normally when the camphor dosage is 2 mg/mL. Therefore, the minimum
inhibitory concentration (MIC) values of camphor against F. oxysporum G5, F. solani G9, F. verticillioide
and F. graminearum are determined to be 4.0, 4.0, 4.0, and 2.0 mg/mL, respectively. The half maximal
inhibitory concentration (IC50) is calculated as 2.0, 2.0, 2.0, and 1.0 mg/mL, respectively. These results
conform to those of the previous study reported by Gazdağlı et al. (2018). They found that the MIC and
the IC50 of camphor against on F. culmorum 9F and F. graminearum H11 were 2 mg/mL and 1 mg/mL,
respectively.

Table 1 shows the absolute inhibition rate of camphor in vivo against the tested fungi. According to the
Table 1, when the concentration of camphor is 1.00 mg/mL, the absolute inhibition rate of F.
graminearum reaches 89.41%, much higher than those of other groups. In general, camphor has the
strongest inhibitory effect on F. graminearum. When the concentration of camphor is 2.00 mg/mL, the
absolute inhibition rates of F. oxysporum G5, F. solani G9, F. verticillioide and F. graminearum reach
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83.65%, 91.98%, 82.61%, and 95.84%, respectively, suggesting that camphor exhibit pronounced
fungicidal activities against the four tested fungi.

Analysis of antifungal mechanism

Relative electric conductivity (REC) was detected to reflect the variation of fungal cytomembrane
permeability. As shown in Fig. 3, the REC of camphor-treated hyphae suspension increases with dosage
and time compared with that of untreated hyphae. After 8h of culture, the electric conductivity of
camphor-treated F. oxysporum G5 began to increase rapidly. After incubation for more than 12 hours, the
relative conductivity of F. oxysporum G5 in the treatment groups (1.00 and 2.00 mg/mL) began to exceed
that in the control (Fig. 3A). 48 h after being treated with camphor of different concentrations :1.00 and
2.00 mg/mL, the relative conductivity of F. solani G9 reached 28.9% and 67.5%, respectively, much higher
than that of the control group (Fig. 3B). Fig. 3C reflects that the relative conductivity of mycelium
suspension (F. verticillioide) increases with the increase of camphor concentration and the prolongation
of treatment time, showing a positive correlation. 48 h after the treatment, the relative conductivity of the
control, 1 mg/mL and 2 mg/mL groups (F. verticillioide) became 16.9%, 24.9% and 35.1%, respectively.
The results in Fig. 3D indict that during the incubation process, the relative conductivity of the control (F.
graminearum) obviously remains unchanged, but with the addition of camphor, the relative conductivity
increases significantly.

To explore the mechanism of camphor inhibiting Fusarium growth, observation was conducted on the
morphology of the four Fusarium strains by SEM (Fig. 4). As shown in Fig. 4 A, C, E, G, without the
treatment of camphor, the mycelium surfaces of F. oxysporum G5, F. solani G9, F. verticillioide and F.
graminearum untreated with camphor are relative smooth and complete. Whereas, 48 h after treatment
with camphor, the morphology of mycelia changes in different degrees mainly in that the mycelia
becomes folded or fractured (Fig. 4 B, D, F and H), indicating that camphor seriously interfers with cell
wall synthesis and suppresses the growth of mycelia.

In order to investigate the effect of camphor on the membrane permeability of the Fusarium strains,
determination was performed on the contents of nucleic acids and proteins in mixtures treated with
camphor for 48 h (Fig. 5). Compared with the control group, after the treatment with 1 and 2 mg/mL of
camphor, there is great increase in the absorption values at the characteristic wavelength of 260 nm
(nucleic acid characteristic absorption peak) and 280 nm (protein characteristic absorption peak). This
indicates that camphor has increased the permeability of cells, resulting in the leak of a large amount of
intracellular nucleic acids and proteins. It was also found that the release degree of biomolecules varies
with different strains. When the concentration of camphor was 2 mg/mL, F. graminearum showed the
largest release of nucleic acids and proteins.

As to nucleic acid release(Fig. 5A), F. solani G9 ranks the first,, followed by F. verticillioide and F.
oxysporum G5, and finally F. graminearum. In the matter of protein leakage(Fig. 5B), the first place goes
to F. solani G9 with a significantly higher leakage than the control, followed by F. verticillioide and F.
graminearum, and ultimately F. oxysporum G5. Compared with the control, at 260 nm (nucleic acids) and
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280 nm (proteins), the absorbance values of F. oxysporum G5, F. solani G9, F. verticillioide and F.
graminearum in suspensions treated with camphor at 1.0 mg/mL increase 1.43, 2.25, 1.92, 1.25 folds
and 1.44, 3.71, 2.61, 1.25 folds respectively, and at 2.0 mg/mL level, they increase 2.01, 6.34, 2.54, 1.71
folds and 2.00, 7.94, 3.91, 2.10 folds, respectively. The results obviously imply that camphor disruptes the
intact cytomembrane structure of F. solani G9, while slightly affecting F. oxysporum G5 and F.
graminearum affected slightly, so it can be concluded that the impact of camphor on the permeability
and structure of Fusarium cytomembrane also varies with species.

To sum up, camphor can inhibit the growth of Fusarium through various ways at different levels. It is
speculated that the antifungal mechanism of camphor to Fusarium mainly involves its interference with
the normal gene expression and protein synthesis in fungal cells. In this way, it can cause damage to the
structural integrity of the fungal cells and cytomembrane permeability, and make mycelium fold up or
break at morphology level, as well as help the release of intracellular substances and the increase of REC
at physiological level. Our study also suggests that camphor, as the main active ingredient of natural
plant essential oils, has the potential to be developed as a fungicide for plant protection and industrial
crop production.

Discussion
It is known that essential oils extracted from aromatic plants are widely used as fungicides (Arif et al.
2009; Gazdağlı et al. 2018; Yörük 2018). Camphor is the main active compound in essential oil. It is found
in many aromatic plants, such as Cinnamonum camphora, Piper capense, Salvia officinalis, Eucalyptus
globulus and Artemisia annua (Guo et al. 2014; Fu et al. 2015; Soidrou et al. 2013; Wijesundara and
Rupasinghe 2018; Marinas et al. 2015; Harkat-Madouri et al. 2015). According to the previous reports and
our findings, camphor is one of the main bioactive components in plant essential oils and an important
effective antimicrobial substance, playing an important role in inhibiting pathogenic microorganisms
including fungi. Therefore, it is speculated that the strong antimicrobial activity of some essential oil
extracted from aromatic plants is related to its camphor content.

Generally, REC is adopted to evaluate the changes in cytomembrane permeability of microorganisms and
other types of cells. In previous work, it was reported that monocaprin affects the REC of Saccharomyces
cerevisiae, Aspergillus niger and Penicillium citrinum and that the permeability of P. citrinum may be more
easily disturbed (Ma et al. 2018). The results imply that the sensitivity of fungi strains to fungistat varies
with species and genus. When the camphor concentration is set as 1.00 and 2.00 mg/mL, the final REC
(48h after treatment) of F. oxysporum G5, F. solani G9, F. verticillioide and F. graminearum reaches 15.8%,
28.9%, 24.9%, 82.2; and 18.9%, 67.5%, 35.1%, 93.0%, respectively. F. graminearum displays the highest
rise in REC among the four tested Fusarium strains. These data suggest that the permeability of fungal
cytomembrane may be more easily disturbed by camphor, resulting in the release of intracellular ions and
charged biomolecules (Molatová et al. 2010; Ma et al. 2018).
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The natural compounds extracted from plants seem to increase the permeability of microbial cell
membranes, resulting in a leakage of cellular content (Burt 2004). Excessive leakage of intracellular ions
and macromolecules, caused by increased membrane permeability, can result in cell death (Labbe and
Saleh 2008). Storia et al. (2011) proposed that microbial cell wall and membrane are the targets of the
antimicrobial activities of many natural plant compounds, such as carvacrol. The treatment of foodborne
contaminated microorganisms with carvacrol could change the cell morphology and structure of some
G+ and G- food-related bacteria. Previous study has also revealed that β-carboline oxadiazole derivatives
could change the normal cell activities of Rhizoctonia solani, the dominant pathogenic fungus causing
rice sheath blight (Zhang et al. 2018). Such adverse effects mainly embrace the decrease of
mitochondrial membrane potential, the accumulation of reactive oxygen species, the blocked DNA
synthesis and the destruction to cell structure. Thus, there could be a similar action mechanism of
camphor against the four tested phytopathogenic Fusarium strains.

Cell membranes play an important role in maintaining the normal physiological and metabolic activities
of cells. Many fungicides inhibit fungal growth by interfering with and destroying the formation and
integrity of cell membranes (Avis 2007). When the cell membrane is destroyed, macromolecules are left
out (Chavan and Tupe 2014). In the previous study, it was found that the Mentha piperita essential oil
(MPE) changes the surface properties and permeability of Fusarium sporotrichioides hyphae (Rachitha et
al. 2017). The increase of the concentration of MPE can trigger corresponding changes to cells, such as
intracellular contents leakage, mycelia distortion, pH change, etc. The leakage of nucleic acid and protein
manifests that camphor treatment can disturb the normal metabolism of Fusarium, and destroy the cell
structure, thus inhibiting the growth of mycelia. As an important volatile component in natural plant
extract, the potential antifungal mechanism of camphor could damage the fungus cell and disturb the
cellular metabolism (Marilena et al. 2001).

The findings from Gazdağlı et al. (2018) revealed the antifungal mechanism of camphor on F.
graminearum and F. culmorum through gene expression level. The analysis of qPCR shows that camphor
treatment down-regulates the tri5 (deoxynivalenol production) expression, while up-regulates the
expression of some genes related to essential cellular activity directly determining the fungal life cycle,
such as hog1, mst20, CAT, POD, mgv1, and stuA genes. The similar findings from Yörük (2018) show that
tetraconazole (TCZ, an important antifungal agent) could fight against F. graminearum at genomic,
epigenetics, transcriptomics and apoptotic levels. Increasing TCZ concentration could enhance the
expression of genes related to apoptosis (Hog1) and oxidative stress (POD), whereas down-regulating the
expression of tri5.

This study shows that camphor has strong antifungal activity against F. oxysporum G5, F. solani G9, F.
verticillioide and F. graminearum, and that the absolute inhibition rate of the four phytopathogenic fungi
could be increased by more than 80% by adding 2 mg/mL camphor in PDA media. The preliminary study
on the mechanism exhibits that camphor could participate in and obstruct the formation of cell wall and
cytomembrane of the phytopathogens. The involvement of camphor makes fungi release intracellular
ions, nucleic acids and proteins necessary for normal cell activity, ultimately inhibiting the growth of
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fungi. In addition, the essential oils extracted from some plant with strong antimicrobial activity may be
related to their camphor content. Camphor may serve as a potential alternative fungicide for its
friendliness to environment and humans. In the future, further studies will be conducted on the molecular
regulation mechanism and transcriptomics of camphor inhibiting the growth of important plant
pathogens.
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Table 1 The inhibition of camphor in vivo against different species of Fusarium.
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Camphor contents
(mg/mL)

Absolute inhibition rate (%)

F. oxysporum
G5

F. solani G9 F. verticillioide F.
graminearum

0.125 3.80 ± 1.43 a 14.55 ± 4.70
a

9.36 ± 1.34 a 7.37 ± 4.78 a

0.25 11.18 ± 1.22 ab 13.60 ± 2.53
a

15.88 ± 2.29
b

33.46 ± 7.80 b

0.50 23.61 ± 4.72 b 15.64 ± 0.52
a

23.99 ± 1.78 c 45.79 ± 3.95 b

1.00 54.63 ± 9.76 c 34.59 ± 4.98
b

54.36 ± 1.34
d

89.41 ± 5.17 c

2.00 83.65 ± 2.37 d 91.98 ± 3.51 c 82.61 ± 3.29 e 95.84 ± 0.13 c

4.00 100.00 e 100.00 c 94.60 ± 0.11 f 100.00 c

Note: Different lowercase letters in a same column indicate a significant difference at p < 0.05.

Figures
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Figure 1

The growth curves of F. oxysporum G5 (A), F. solani G9 (B), F. verticillioide (C) and F. graminearum (D) at
various camphor concentrations.
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Figure 2

Inhibitory effects of camphor on the growth of F. oxysporum G5 (A), F. solani G9 (B), F. verticillioide (C)
and F. graminearum (D) under different concentrations (mg/mL).
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Figure 3

Effects of camphor treatment on the cytomembrane permeability of F. oxysporum G5 (A), F. solani G9 (B),
F. verticillioide (C) and F. graminearum (D).
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Figure 4

Scanning electron micrographs of F. oxysporum G5, F. solani G9, F. verticillioide and F. graminearum
treated with camphor. A, C, E and G are F. oxysporum G5, F. solani G9, F. verticillioide and F. graminearum
untreated with camphor, respectively; B, D, F and H are F. oxysporum G5, F. solani G9, F. verticillioide and F.
graminearum treated with camphor at 2.00 mg/mL level, respectively.
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Figure 5

Release of nucleic acids (260 nm, A) and proteins (280 nm, B) of F. oxysporum G5, F. solani G9, F.
verticillioide and F. graminearum treated with camphor at different concentrations (0, 1.00, and 2.00
mg/mL, *p < 0.05).
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