Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of death worldwide. To identify cell-specific mechanisms underlying COPD pathobiology, we analysed single-cell RNA sequencing (scRNAseq) profiles of explanted lung tissue from subjects with advanced COPD or control lungs. Findings were validated with scRNAseq of lungs from mice exposed to 10 months of cigarette smoke (CS), isolated human alveolar epithelial cells, and immunostaining of human lung tissue samples. We identified a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance, exemplified by decreased expression of the stress-response gene NUPR1. Network analyses identified an important role for inflamed capillary endothelial cells in COPD, particularly through CXCL-motif chemokine signalling. Finally, we detected a metallothionein expressing macrophage subpopulation unique to COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.