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Abstract: In recent years, distributed fiber acoustic sensor (DAS) technology has been applied for high-7 

precision acquisition of vertical seismic profile (VSP) data, which has the advantages of high-density 8 

acquisition, low cost, safety and coordination. However, coupling noise with characteristics similar to that of 9 

the spring is produced and mixed in the VSP data collected by the distributed optical fiber in the well. The 10 

energy of the coupling noise tends to be very strong, resulting in the effective VSP data being covered. In this 11 

paper, coupling noise is constructed by analyzing its morphological characteristics. The dictionaries of 12 

coupling noise and clean VSP data are constructed respectively using their different characteristics, and the 13 

morphological component analysis (MCA) algorithm is proposed to separate them. The alternating direction 14 

multiplier method (ADMM) is used to solve the objective function, for which both L1 and L2 norm 15 

regularizations are adopted in the MCA algorithm. However, the performance of the algorithm heavily relies 16 

on the coefficient selection of the threshold, which can lead to noise residue in the denoised VSP data and 17 

effective signal attenuation due to the inappropriate selection of the threshold. Therefore, the frequency-18 

wavenumber (FK) transform is further used to extract VSP data from the separated coupling noise. The 19 

proposed MCA and FK transform (MCA-FK) algorithm is applied to the field data and has achieved good 20 

results. 21 

Keywords: Coupling noise suppression; DAS; MCA-FK; ADMM  22 

1. introduction 23 

With the rapid development of distributed fiber acoustic sensor (DAS) technology, it is used in various 24 

fields of industry. DAS technology is used for downhole high-precision seismic data acquisition and the 25 

vertical seismic profile (VSP) data imaging by having the advantages of low cost, corrosion resistance, easy 26 

data transmission, high precision and high sensitivity. The principle is to transform the optical signal into 27 

seismic signal by the change of optical path in the optical fiber caused by the earthquake. 28 
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As a new type of seismic detection technology, DAS technology was first proposed at the 2011 SEG 29 

annual meeting. Mestayer et al. (2011) analyzed the data collected by DAS and that by traditional geophones 30 

and concluded that the seismic data and resolution generated by the two means are basically the same. Daley 31 

et al. (2013) and Mateeva et al. (2014) introduced the principle of the data acquisition with DAS technology 32 

in seismic exploration. They also processed and interpreted the field data and pointed out many advantages 33 

and future challenges of DAS technology.  34 

However, as a new development technology, the coupling noise similar to the spring is produced because 35 

the optical fiber cable can’t be better coupled with the well resulting in coherent cable beat when the VSP data 36 

is collected by the distributed optical fiber in the well. YU et al. (2016) analyzed and fitted parameters of the 37 

cable ringing noise, including with the first breaking time, amplitude, period and average wavelet. Chen et al. 38 

(2018) proposed DCT dictionary and wavelet dictionary denoising based on sparse optimization, and removed 39 

coupling noise by different characteristics of coupling noise and effective signal. However, coupling noise 40 

residue still present especially near the first arrival wave via the method because coupling noise will be 41 

attenuated with the increase of depth. Hou et al. (2021) improved chen's method via adaptively calculating the 42 

length of the coupling noise contained in each trace of the VSP data, so the coupling noise near the first arrival 43 

wave is better suppressed. Gu et al. (2021) removed the coupling noise by forward modeling for the attenuation 44 

curve of the coupling noise. Lv et al. (2022) optimized the function for obtaining the coupling noise's 45 

parameters of amplitude, phase and frequency and then removing it. Shao et al. (2022) developed a time–46 

frequency analysis method based on low-rank and sparse matrix decomposition and data position points 47 

distribution maps to separate signals from the coupling noise. Based on deep learning, Dong et al. (2022) and 48 

Zhong et al. (2022) constructed the high-precision deep learning denoising network which can effectively 49 

suppress the noise in VSP data and improved the signal-to-noise ratio of denoising results.  50 

Inspired by Chen et al. (2018), we proposed MCA and FK transform (MCA-FK) algorithm to better 51 

attenuate the coupling noise. In this paper, the model of coupling noise is firstly constructed based on analyzing 52 

its frequency component and the more suitable dictionaries of coupling noise and clean VSP data are 53 

constructed respectively. Then the alternating direction multiplier method (ADMM) to solve the objective 54 

function of which L1 and L2 norm regularizations are adopted in the MCA algorithm. In addition, the 55 

frequency-wavenumber (FK) transform is further used to extract the useful signal which is remained in the 56 

separated coupling noise because of inappropriate selection of the threshold in MAC algorithm. Finally, the 57 

proposed MCA-FK algorithm is applied to the field data and has achieved good results. 58 
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2. Principle 59 

2.1 Analysis of coupling noise and VSP data 60 

The noisy VSP data y contains clean VSP data s0、coupling noise s1 and random noise n : 61 

y = s0 + s1 + n                                  (1) 62 

The formation of coupling noise is mainly due to the fact that the optical fiber cable fails to couple well 63 

with the wellbore. The vibration caused by the earthquake makes the unfixed optical fiber cable beat back and 64 

forth, forming a noise with strong energy similar to the sawtooth waveform. When the maximum distance of 65 

the unfixed optical fiber cable is A, and the vibrational velocity of the optical fiber cable is V, the back and 66 

forth beats process of the cable can be described with the relationship between the distance d of the acoustic 67 

sensor system recording the vibration and the travel time t (Gu et al. 2021). It can be represented as: 68 

d(t) = {
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                  (2) 69 

where a mod b means the remainder of a divided by b. 70 

The function of the reflection coefficient r(t) of the sensor system recorded with the travel time t is equal 71 

to that of d(t), and its waveform is shown in Fig.1a. The coupling noise 𝑠1 (t) can be expressed as the 72 

convolution of the reflection coefficient r(t) and Ricker wavelet w(t): 73 

𝑠1(𝑡) = 𝑤(𝑡) ∗ 𝑟(𝑡)                                (3) 74 

The waveform characteristics of 𝑠1(t) (Fig.1b) are completely consistent with those of the coupling noise 75 

in the field data (Fig.1c).  76 

To verify the correctness of the coupling noise model, time-frequency spectrum analysis was performed 77 

on some traces of the coupling noise model and the field data that is interfered by the coupling noise. Fig.2a 78 

and 2b show two traces from Fig.1b, and Fig.2c shows one trace from Fig.1c. Fig.2a and 2b exhibit periodic 79 

oscillating waveforms because the function of reflection coefficient r(t) is periodic. Fig.2d and 2e represent 80 

the frequency spectra of Fig.2a and 2b, respectively. Since the frequency of the reflection coefficient is 50Hz 81 

(Fig.1a), there is a fundamental frequency of 50Hz and a second harmonic frequency of 100Hz in both Fig.2d 82 

and 2e. Fig.2f displays the frequency spectrum of Fig.2c, and its peaks at 15Hz and 30Hz indicate that the 83 

coupling noise in the field data also contains harmonic components. 84 

 85 
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 113 

The clean VSP data (Fig.3a) is the convolution of Ricker wavelet and the formation reflection 114 

coefficient. The waveform of the 20th trace (Fig.3b) is composed of Ricker wavelets and it has continuous 115 

frequency distribution (Fig.3c) because the formation reflection coefficient is aperiodic. Therefore, the VSP 116 

data can be formed by superposition of Ricker wavelet. 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

Fig.1 Coupling noise model. a) relationship between the reflection coefficient of sensor system record and the 

travel time; b) model of coupling noise; c) field data 

(a)              (b)               (c) 

Fig.3  Time-frequency domain analysis of VSP model. a) VSP model; b) the 20th trace of a); c) the spectrum of b) 

(a)                           (b)                            (c) 

(a)                          (b)                         (c) 

Fig.2 Time-frequency domain analysis of coupling noise. a) the first trace of Fig.1b; b) the third trace of 

Fig.1b; c) the74th trace of Fig.1c; d) the spectrum of a); e) the spectrum of b); f) the spectrum of c). 

(d)                          (e)                         (f) 
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2.2 Theory of MCA-FK 127 

2.2.1 MCA 128 

As long as the signal is compressible or sparse in a transform domain, the transformed high-dimensional 129 

signal can be projected onto a low-dimensional space with an observation matrix that is not related to the 130 

transform basis base on the theory of compressed sensing (Pilikos 2020). Morphological component analysis 131 

(MCA) is a compressed sensing framework (Starck et al. 2005; Chen et al. 2018). Several signals can be 132 

separated by MCA method because they have their sparse morphological characteristics of different signal 133 

components in different transform domains. They can be reconstructed respectively from their small 134 

projections with high probability by solving an optimization problem.  135 

According to the MCA theory, we assume that s0 can be expressed by dictionary A0 and sparse matrix 136 

x0 , s1  can be expressed by dictionary A1  and sparse matrix x1 , whereas A0  cannot express s1  and A1 137 

cannot express s0, so the expression (1) can be described as (Chen et al. 2018): 138 

y = A0x0 + A1x1 + n                              (4) 139 

The x0  and x1  matrices should be sparse enough, so we rewrite (4) as the following minimization 140 

problem with L0 norm regularization: 141 

arg min
x1,x0

∥∥x0∥∥0
+ ∥∥x1∥∥0

 s.t. ∥∥Y − A0x0 − A1x1∥∥2
2 ≤ δ                (5) 142 

The solution of L0 norm is an np-hard problem which can be replaced as L1 norm, so the minimization 143 

problem (5) is rewritten as: 144 

arg min
x1,x0

∥∥x0∥∥1
+ ∥∥x1∥∥1

 s.t. ∥∥Y − A0x0 − A1x1∥∥2
2 ≤ δ                (6) 145 

2.2.2 Dictionary 146 

The selection of dictionaries A0 and A1is important for separating clean VSP data and the coupling 147 

noise. The selection of dictionaries A0 and A1 is important for separating coupling noise and clean VSP data. 148 

Dictionaries A0 and A1 are respectively composed with Ricker and sine wavelets with different frequencies 149 

and different phases based on the analysis of clean VSP data and coupling noise in section 2.1. 150 

The dictionary A0 is composed of Ricker wavelets with different phases (Fig.4a). The frequency of the 151 

Ricker wavelet is determined by the wavelet frequency in the clean VSP data. For example, the frequency of 152 

selected Ricker wavelet is 30Hz for the dictionary A0 of the VSP data in Fig.3. The phase of the Ricker 153 

wavelet for each trace is different in the dictionary A0. The phase of Ricker wavelet at the 100th and 900th 154 
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trace is shown in Fig.4b and Fig.4c, respectively. The waveform does not change, and the phase moves from 155 

left to right. 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

The dictionary A1 is composed of two parts which is constructed by the first and second harmonics of 168 

the coupling noise, respectively. For example, the first 1000 traces are 50Hz sinusoidal signals (Fig.5b), and 169 

the last 1000 traces are 1000Hz sinusoidal signals (Fig.5c) in the dictionary A1 (Fig.5a) of the coupling noise 170 

model (Fig.1b). In addition, the phase of the two independent parts also moves from left to right in their 171 

dictionaries, respectively. 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

2.2.3 ADMM iterative solution 182 

The ADMM algorithm (Shi et al. 2014; Aghamiry et al. 2020) is used to solve the above problem (6). 183 

The ADMM algorithm provides a framework for solving optimization problems with linear equality 184 

constraints. It is convenient for us to use the augmented Lagrangian algorithm (ALM) to decompose the 185 

original optimization problem into several relatively good sub-optimization problems for iterative solution. 186 

We introduce z1、z0 , and let x1 = z1、x0 = z0 . We also refer to the update compensation intermediate 187 

parameters u1、u0, and the iteration step ρ1、ρ0. The Lagrange function of the problem is written as: 188 

I(x0, x1, z0, z1, u0, u1) = arg min
x0,x1,z0,z1,u0,u1

1

2
∥∥Y − A0x0 − A1x1∥∥2

2 + λ0∥∥z0∥∥1
+ λ1∥∥z1∥∥1

   189 

Fig.4 The demonstration of dictionary A0. a) dictionary A0. b) the 100th trace of a); c) the 900th trace of a). 

(a)                            (b)                            (c) 

Fig.5 The demonstration of dictionary A1. a) dictionary A1. b) the 100th trace of a); c) the 1200th trace of a). 

(a)                            (b)                             (c) 
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+
ρ0

2
∥∥x0 − z0 + u0∥∥2

2 +
ρ1

2
∥∥x1 − z1 + u1∥∥2

2
                   (7) 190 

The iterative framework of ADMM algorithm is used to solve the problem (7). In the iterative process, 191 

only a single variable is iterated at each step, and other variables are calculated as known variables. For the 192 

update iteration of each parameter, only the part containing iterative parameters needs to be considered, so the 193 

optimization problem of each parameter is as follows (Shi et al. 2014): 194 

P1(x0) = arg min
x0

1

2
∥∥Y − A0x0 − A1x1∥∥2

2 +
ρ0

2
∥∥x0 − z0 + u0∥∥2

2
           (8) 195 

P2(x1) = arg min
x1

1

2
∥∥Y − A0x0 − A1x1∥∥2

2 +
ρ1

2
∥∥x1 − z1 + u1∥∥2

2
           (9) 196 

P3(z0) = arg min
z0

 λ0∥∥z0∥∥1
+

ρ0

2
∥∥x0 − z0 + u0∥∥2

2
                 (10) 197 

P4(z1) = arg min
z1

 λ1∥∥z1∥∥1
+

ρ1

2
∥∥x1 − z1 + u1∥∥2

2
                 (11) 198 

P5(u0) = arg min
u0

ρ0

2
∥∥x0 − z0 + u0∥∥2

2
                     (12) 199 

P6(u1) = arg min
u1

ρ1

2
∥∥x1 − z1 + u1∥∥2

2
                     (13) 200 

The parameters of each step are solved to obtain the updated iterative algorithm. The latest parameters 201 

obtained by each update iteration will enter the algorithm of the next parameter iteration. 202 

x0
(k+1)

= (A0
TA0 + ρ0I)−1[ρ0(z0

(k)
− u0

(k)
) + A0

T(Y − A1
(k)

X1
(k)

)]          (14) 203 

xl
(k+1)

= (A1
TA1 + ρ1I)−1[ρ1(z1

(k)
− u1

(k)
) + A1

T(Y − A0
(k)

X0
(k+1)

)]         (15) 204 

z0
(k+1)

= Tλ0/ρ0
(x0

(k+1)
+ u0

(k)
)                         (16) 205 

z1
(k+1)

= Tλ1/ρ1
(x1

(k+1)
+ u1

(k)
)                         (17) 206 

   u0
(k+1)

= u0
(k)

+ x0
(k+1)

− z0
(k+1)

                        (18) 207 

u1
(k+1)

= u1
(k)

+ x1
(k+1)

− z1
(k+1)

                        (19) 208 

where k represents the number of iterations and Tλ/ρ(S) is soft-thresholding operator (Liu et al. 2016): 209 

Tλ/ρ(S) = sign(S) ∙ max(|S| − λ/ρ, 0)                    (20) 210 

Among them, ρ0=ρ1=1, by adjusting the size of λ0 and λ1, the effective signal and coupling noise are 211 

separated. 212 

2.2.4 FK transform 213 

Because the performance of MCA method to suppress coupling noise relies heavily on the coefficient 214 
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selection of the threshold function, the inappropriate coefficient often leads to a certain amount of noise 215 

residues in the denoised VSP data.  216 

The FK filtering (Draganov et al. 2009) method is based on the principle of two-dimensional Fourier 217 

transform. It can convert the VSP data from the function f (t, x) represented by the reflection time t and the 218 

trace position x into a function F (f, k) represented by frequency and spatial wave number k, that is: 219 

F(f, k) = ∫
−∞

+∞
 ∫

−∞

+∞
 f(t, x)e−2πi(ft+kx)dt dx                 (21) 220 

The FK diagram shown in Fig.6a has zones 1-3 which are regarded as a high-speed, medium-speed and 221 

low-speed zone, respectively. Since the apparent velocities of the effective signal and coupling noise in the 222 

noisy VSP data are different, they will be centered in different regions in FK domain. The FK diagram of VSP 223 

data is shown in Fig.6b. Because the cable beats fast, the coupling noise is distributed in the high-speed area 224 

of the first zone, and the effective VSP signal is distributed in the medium-speed area of the second zone. 225 

According to this feature, a filter can be designed in the FK domain to separate the effective signal in the 226 

separated coupling noise after using MCA method. The use of FK transform will reduce the impact of the 227 

threshold function and improve the signal-to-noise ratio. 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

3. Examples 239 

3.1 Synthetic data 240 

The synthetic coupling noise and clean VSP data model are superimposed, and random noise is added to 241 

synthesize the noisy VSP model (Fig.7a). The separated results using MCA and MCA-FK algorithms, 242 

respectively. The dictionaries A0  and A1  are constructed based on the principle in section 2.2.2. λ0  is 243 

5 × 10−4 and λ1 is 5 × 10−6. Most of the coupling noise and random noise (Fig.7c) can be separated from 244 

noisy data with MCA algorithm, however there are still some residual signal in separated noise. Meanwhile 245 

there are some noise in the separated signal (Fig.7b). Compared with those of MCA, the separated noise 246 

Fig.6  FK spectrum. a) FK spectrum; b) FK spectrum of noisy VSP data. 

(a)                               (b) 
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(Fig.7d) and the effective signal (Fig.7e) via MCA-FK algorithm are separated more effective. Fig.8a is the 247 

31st trace of noisy VSP model (Fig.7a) and the subgraphs in Fig.8 correspond to those of Fig.7. As can be 248 

seen from figures 7 and 8, the effective signal is basically undisturbed and the coupled noise and random noise 249 

are successfully suppressed via MCA-FK algorithm. 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

(d)                            (e)                        

(a)                            (b)                            (c)                      

Fig.7 Denoising of noisy VSP model. a) noisy VSP model; b) denoised effective signal via MCA; c) separated 

noise via MCA; d) separated effective signal via MCA-FK; e) separated noise via MCA-FK; 

(d)                           (e)                     

(a)                            (b)                            (c)        

Fig.8 Demonstration of a trace in Fig.7.  a) the 31th trace of Fig.7a); b) denoised effective signal via MCA; 

c) separated noise via MCA; d) separated effective signal via MCA-FK; e) separated noise via MCA-FK; 
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3.2 Field data  276 

To further demonstrate the performance of MCA-FK in practice, we choose the field VSP data (Fig.9a) 277 

from eastern China. The field data is much more complex than the VSP model. The field VSP signal is 278 

seriously disturbed by the coupling noise and random noise.  279 

The noisy VSP data is processed via MCA and MCA-FK algorithms, respectively. In these processing, 280 

the length of the processing window is 200. For the dictionary A0 shown in Fig.9b of the effective signal, the 281 

appropriate Ricker wavelet is selected by analyzing the spectrum of some traces undisturbed by the coupling 282 

noise in the field VSP data. As shown in Fig.9c, the trace reconstructed (green) using the Ricker wavelet 283 

dictionary is almost identical with the original signal(black).  284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

The spectrum analysis of each part of the coupling noise interference is carried out to determine the 298 

frequency characteristics and number N of the coupling noise, and spliced into an over-complete dictionary 299 

A1, The row size of the dictionary A1 is 200 and the column size is 200*N(Fig.10e). The separated effective 300 

signal and the coupling noise via MCA are shown in Fig.10a and b, respectively. It can be clearly observed 301 

that the part of the original signal covered by the coupling noise is missing, and the missing part appears in 302 

the extracted coupling noise. Because the coupling noise presents a regular signal, and the FK transform has 303 

a strong suppression effect on such signals, the VSP signal contained in the coupling noise can be extracted to 304 

reconstruct the effective signal (Fig.10c) by the MCA-FK algorithm. At the same time, the coupled noise and 305 

(b) (a)      

(c) 

Fig.9 Demonstration of data reconstructed with dictionary A0. a) field data; b) dictionary A0; 

c) original trace undisturbed by coupling noise (black) and its reconstruction (green).  
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random noise (Fig.10d) are more successfully suppressed. In addition, the field data also contains some similar 306 

transverse waves left by VSP data preprocessing, which is not processed in this paper. 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

4. Conclusion 331 

In this paper, the algorithm of DAS coupling noise suppression based on MCA and FK transform is 332 

proposed. Firstly, through the different characteristics of effective signal and coupling noise, the high-333 

dimensional space dictionaries are constructed for effective signal and coupling noise, respectively.  334 

(a)                                      (b)                                 

(c)                                     (d) 

Fig.10 Demonstration of denoised results for field data in Fig.9a. a) the separated VSP signal via MCA; b) the separated 

noise via MCA; c) the separated VSP signal by MCA-FK. d) the separated noise by MCA-FK; e) dictionary A1. 

(e)                                    
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Secondly, the noisy VSP data can be separated into effective signal, coupling noise and random noise through 335 

MCA algorithm which is competed by solving the objective function including L1 and L2 norm regularizations 336 

with ADMM. Finally, FK transform is used to extract the residue effective signal in the separated coupling 337 

noise. Synthetic and field data examples demonstrate that the proposed algorithm can successfully suppress 338 

the coupling noise and random noise for the noisy VSP data. 339 

 340 
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