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DAS coupling noise suppression based on MCA-FK
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Abstract: In recent years, distributed fiber acoustic sensor (DAS) technology has been applied for high-
precision acquisition of vertical seismic profile (VSP) data, which has the advantages of high-density
acquisition, low cost, safety and coordination. However, coupling noise with characteristics similar to that of
the spring is produced and mixed in the VSP data collected by the distributed optical fiber in the well. The
energy of the coupling noise tends to be very strong, resulting in the effective VSP data being covered. In this
paper, coupling noise is constructed by analyzing its morphological characteristics. The dictionaries of
coupling noise and clean VSP data are constructed respectively using their different characteristics, and the
morphological component analysis (MCA) algorithm is proposed to separate them. The alternating direction
multiplier method (ADMM) is used to solve the objective function, for which both L1 and L2 norm
regularizations are adopted in the MCA algorithm. However, the performance of the algorithm heavily relies
on the coefficient selection of the threshold, which can lead to noise residue in the denoised VSP data and
effective signal attenuation due to the inappropriate selection of the threshold. Therefore, the frequency-
wavenumber (FK) transform is further used to extract VSP data from the separated coupling noise. The
proposed MCA and FK transform (MCA-FK) algorithm is applied to the field data and has achieved good

results.
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1. introduction

With the rapid development of distributed fiber acoustic sensor (DAS) technology, it is used in various
fields of industry. DAS technology is used for downhole high-precision seismic data acquisition and the
vertical seismic profile (VSP) data imaging by having the advantages of low cost, corrosion resistance, easy
data transmission, high precision and high sensitivity. The principle is to transform the optical signal into

seismic signal by the change of optical path in the optical fiber caused by the earthquake.
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As a new type of seismic detection technology, DAS technology was first proposed at the 2011 SEG
annual meeting. Mestayer et al. (2011) analyzed the data collected by DAS and that by traditional geophones
and concluded that the seismic data and resolution generated by the two means are basically the same. Daley
et al. (2013) and Mateeva et al. (2014) introduced the principle of the data acquisition with DAS technology
in seismic exploration. They also processed and interpreted the field data and pointed out many advantages
and future challenges of DAS technology.

However, as a new development technology, the coupling noise similar to the spring is produced because
the optical fiber cable can’t be better coupled with the well resulting in coherent cable beat when the VSP data
is collected by the distributed optical fiber in the well. YU et al. (2016) analyzed and fitted parameters of the
cable ringing noise, including with the first breaking time, amplitude, period and average wavelet. Chen et al.
(2018) proposed DCT dictionary and wavelet dictionary denoising based on sparse optimization, and removed
coupling noise by different characteristics of coupling noise and effective signal. However, coupling noise
residue still present especially near the first arrival wave via the method because coupling noise will be
attenuated with the increase of depth. Hou et al. (2021) improved chen's method via adaptively calculating the
length of the coupling noise contained in each trace of the VSP data, so the coupling noise near the first arrival
wave is better suppressed. Gu et al. (2021) removed the coupling noise by forward modeling for the attenuation
curve of the coupling noise. Lv et al. (2022) optimized the function for obtaining the coupling noise's
parameters of amplitude, phase and frequency and then removing it. Shao et al. (2022) developed a time—
frequency analysis method based on low-rank and sparse matrix decomposition and data position points
distribution maps to separate signals from the coupling noise. Based on deep learning, Dong et al. (2022) and
Zhong et al. (2022) constructed the high-precision deep learning denoising network which can effectively
suppress the noise in VSP data and improved the signal-to-noise ratio of denoising results.

Inspired by Chen et al. (2018), we proposed MCA and FK transform (MCA-FK) algorithm to better
attenuate the coupling noise. In this paper, the model of coupling noise is firstly constructed based on analyzing
its frequency component and the more suitable dictionaries of coupling noise and clean VSP data are
constructed respectively. Then the alternating direction multiplier method (ADMM) to solve the objective
function of which L1 and L2 norm regularizations are adopted in the MCA algorithm. In addition, the
frequency-wavenumber (FK) transform is further used to extract the useful signal which is remained in the
separated coupling noise because of inappropriate selection of the threshold in MAC algorithm. Finally, the

proposed MCA-FK algorithm is applied to the field data and has achieved good results.
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2. Principle

2.1 Analysis of coupling noise and VSP data

The noisy VSP data y contains clean VSP data s;. coupling noise s; and random noise n :
y=5,+5; +n (D
The formation of coupling noise is mainly due to the fact that the optical fiber cable fails to couple well
with the wellbore. The vibration caused by the earthquake makes the unfixed optical fiber cable beat back and
forth, forming a noise with strong energy similar to the sawtooth waveform. When the maximum distance of
the unfixed optical fiber cable is A, and the vibrational velocity of the optical fiber cable is V, the back and
forth beats process of the cable can be described with the relationship between the distance d of the acoustic

sensor system recording the vibration and the travel time t (Gu et al. 2021). It can be represented as:

(tmod (24))v 0 <tmod(®) <

4
2A A 2A ‘i‘l (2)
A—(t mod(V))V S, St mod(v) <

24
v
where a mod b means the remainder of a divided by b.

The function of the reflection coefficient r(t) of the sensor system recorded with the travel time t is equal
to that of d(t), and its waveform is shown in Fig.la. The coupling noise s;(t) can be expressed as the
convolution of the reflection coefficient r(t) and Ricker wavelet w(t):

s1(t) = w(t) * (1) 3)

The waveform characteristics of s;(t) (Fig.1b) are completely consistent with those of the coupling noise
in the field data (Fig.1c).

To verify the correctness of the coupling noise model, time-frequency spectrum analysis was performed
on some traces of the coupling noise model and the field data that is interfered by the coupling noise. Fig.2a
and 2b show two traces from Fig.1b, and Fig.2c shows one trace from Fig.1c. Fig.2a and 2b exhibit periodic
oscillating waveforms because the function of reflection coefficient r(t) is periodic. Fig.2d and 2e represent
the frequency spectra of Fig.2a and 2b, respectively. Since the frequency of the reflection coefficient is 5S0Hz
(Fig.1a), there is a fundamental frequency of 50Hz and a second harmonic frequency of 100Hz in both Fig.2d
and 2e. Fig.2f displays the frequency spectrum of Fig.2c, and its peaks at 15Hz and 30Hz indicate that the

coupling noise in the field data also contains harmonic components.
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Fig.1 Coupling noise model. a) relationship between the reflection coefficient of sensor system record and the

travel time; b) model of coupling noise; c) field data
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Fig.2 Time-frequency domain analysis of coupling noise. a) the first trace of Fig.1b; b) the third trace of
Fig.1b; c¢) the74th trace of Fig.1c; d) the spectrum of a); e) the spectrum of b); f) the spectrum of ¢).

The clean VSP data (Fig.3a) is the convolution of Ricker wavelet and the formation reflection
coefficient. The waveform of the 20th trace (Fig.3b) is composed of Ricker wavelets and it has continuous
frequency distribution (Fig.3c) because the formation reflection coefficient is aperiodic. Therefore, the VSP

data can be formed by superposition of Ricker wavelet.
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Fig.3 Time-frequency domain analysis of VSP model. a) VSP model; b) the 20th trace of a); ¢) the spectrum of b)
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2.2 Theory of MCA-FK
2.2.1 MCA

As long as the signal is compressible or sparse in a transform domain, the transformed high-dimensional
signal can be projected onto a low-dimensional space with an observation matrix that is not related to the
transform basis base on the theory of compressed sensing (Pilikos 2020). Morphological component analysis
(MCA) is a compressed sensing framework (Starck et al. 2005; Chen et al. 2018). Several signals can be
separated by MCA method because they have their sparse morphological characteristics of different signal
components in different transform domains. They can be reconstructed respectively from their small
projections with high probability by solving an optimization problem.

According to the MCA theory, we assume that s, can be expressed by dictionary A, and sparse matrix
Xg, S; can be expressed by dictionary A; and sparse matrix X;, whereas A, cannot express s; and A,
cannot express Sg, so the expression (1) can be described as (Chen et al. 2018):

y =ApXg + AiXy +n (4)

The x, and x; matrices should be sparse enough, so we rewrite (4) as the following minimization
problem with LO norm regularization:

argminfixoll, + %1l s.t. 1Y = Agxo — Ay > < 8 (5)
X1.X0

The solution of LO norm is an np-hard problem which can be replaced as L1 norm, so the minimization
problem (5) is rewritten as:

arg min|[xoll, + lIxq4ll; s.t. [Y —Agxo — A1X1"§ <9 (6)

2.2.2 Dictionary

The selection of dictionaries A, and A;is important for separating clean VSP data and the coupling
noise. The selection of dictionaries A, and A; is important for separating coupling noise and clean VSP data.
Dictionaries Ay and A; are respectively composed with Ricker and sine wavelets with different frequencies
and different phases based on the analysis of clean VSP data and coupling noise in section 2.1.

The dictionary A, is composed of Ricker wavelets with different phases (Fig.4a). The frequency of the
Ricker wavelet is determined by the wavelet frequency in the clean VSP data. For example, the frequency of
selected Ricker wavelet is 30Hz for the dictionary A, of the VSP data in Fig.3. The phase of the Ricker

wavelet for each trace is different in the dictionary A,. The phase of Ricker wavelet at the 100th and 900th
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trace is shown in Fig.4b and Fig.4c, respectively. The waveform does not change, and the phase moves from

left to right.
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Fig.4 The demonstration of dictionary A,. a) dictionary A,. b) the 100th trace of a); c) the 900th trace of a).

The dictionary A; is composed of two parts which is constructed by the first and second harmonics of
the coupling noise, respectively. For example, the first 1000 traces are S0Hz sinusoidal signals (Fig.5b), and
the last 1000 traces are 1000Hz sinusoidal signals (Fig.5c) in the dictionary A; (Fig.5a) of the coupling noise
model (Fig.1b). In addition, the phase of the two independent parts also moves from left to right in their

dictionaries, respectively.
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Fig.5 The demonstration of dictionary A;. a) dictionary A;.b) the 100th trace of a); ¢) the 1200th trace of a).

2.2.3 ADMM iterative solution

The ADMM algorithm (Shi et al. 2014; Aghamiry et al. 2020) is used to solve the above problem (6).
The ADMM algorithm provides a framework for solving optimization problems with linear equality
constraints. It is convenient for us to use the augmented Lagrangian algorithm (ALM) to decompose the
original optimization problem into several relatively good sub-optimization problems for iterative solution.
We introduce z;. zy, and let x; = z;. Xy = z5. We also refer to the update compensation intermediate
parameters u;. Ug, and the iteration step p;- po. The Lagrange function of the problem is written as:

. 1 2
1(Xg, X1, Zg, Z1, Ug, Uy) = argmin > IY — Aogxo — Arxq I + AollZoll, + Aqliz4 I,
X0,X1,20,Z1,U0,U1
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The iterative framework of ADMM algorithm is used to solve the problem (7). In the iterative process,
only a single variable is iterated at each step, and other variables are calculated as known variables. For the
update iteration of each parameter, only the part containing iterative parameters needs to be considered, so the

optimization problem of each parameter is as follows (Shi et al. 2014):

P, (x,) = arg mln— IY = AgXo — Asxy Il + 22 1Ix — 2o + uoll; (8)
Xo

Py(x,) = argxmin% IY — Agxo — Agxall? + 2 lix; — 21 + uyll2 9)
P;(zy) = arg min Ay llzol, + B ||x0 —Zy + uOII (10)
Py(zy) = arg min A4 Izl +2 |Ix1 -7+ u1|| (11)
P (uy) = argumm—llxo — 7y + uollg (12)

0
Ps(uy) = argumm— Ix; —zq + u1|| (13)

1

The parameters of each step are solved to obtain the updated iterative algorithm. The latest parameters

obtained by each update iteration will enter the algorithm of the next parameter iteration.

x3 Y = (ATA, + pol) M [po (25 — ul?) + AT (Y — ALPX{)] (14)
(Y = (ATA; + pa D)1 (209 — ul®) + AT(Y — AJOX{ )] (15)
Z(()k+1) Txo/po(x(k+1)+ (k)) (16)
Z§k+1)_ 1/p1(x(k+1)+ (k)) a7

u(()k+1) — ugk) + X(k+1) _ Z(()k+1) (18)

u§k+1) — ugk) + X§k+1) _ Z§k+1)

(19)
where k represents the number of iterations and T, ,(S) is soft-thresholding operator (Liu et al. 2016):

Tyyp(S) = sign(S) - max(|S| —4/p,0) (20)
Among them, po=p;=1, by adjusting the size of Ay and 2A;, the effective signal and coupling noise are

separated.

2.2.4 FK transform

Because the performance of MCA method to suppress coupling noise relies heavily on the coefficient

7



selection of the threshold function, the inappropriate coefficient often leads to a certain amount of noise
residues in the denoised VSP data.

The FK filtering (Draganov et al. 2009) method is based on the principle of two-dimensional Fourier
transform. It can convert the VSP data from the function f (t, X) represented by the reflection time t and the
trace position x into a function F (f, k) represented by frequency and spatial wave number k, that is:

F(EK) = [0 [ T2 f(t, x)e2milt+ko gt dx 1)

The FK diagram shown in Fig.6a has zones 1-3 which are regarded as a high-speed, medium-speed and
low-speed zone, respectively. Since the apparent velocities of the effective signal and coupling noise in the
noisy VSP data are different, they will be centered in different regions in FK domain. The FK diagram of VSP
data is shown in Fig.6b. Because the cable beats fast, the coupling noise is distributed in the high-speed area
of the first zone, and the effective VSP signal is distributed in the medium-speed area of the second zone.
According to this feature, a filter can be designed in the FK domain to separate the effective signal in the
separated coupling noise after using MCA method. The use of FK transform will reduce the impact of the

threshold function and improve the signal-to-noise ratio.
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Fig.6 FK spectrum. a) FK spectrum; b) FK spectrum of noisy VSP data.

3. Examples

3.1 Synthetic data

The synthetic coupling noise and clean VSP data model are superimposed, and random noise is added to
synthesize the noisy VSP model (Fig.7a). The separated results using MCA and MCA-FK algorithms,
respectively. The dictionaries A, and A; are constructed based on the principle in section 2.2.2. A, is
5x 107* and A; is 5 X 107%. Most of the coupling noise and random noise (Fig.7c) can be separated from
noisy data with MCA algorithm, however there are still some residual signal in separated noise. Meanwhile

there are some noise in the separated signal (Fig.7b). Compared with those of MCA, the separated noise

8



are successfully suppressed via MCA-FK algorithm.
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(Fig.7d) and the effective signal (Fig.7¢e) via MCA-FK algorithm are separated more effective. Fig.8a is the
31st trace of noisy VSP model (Fig.7a) and the subgraphs in Fig.8 correspond to those of Fig.7. As can be

seen from figures 7 and 8, the effective signal is basically undisturbed and the coupled noise and random noise

Fig.7 Denoising of noisy VSP model. a) noisy VSP model; b) denoised effective signal via MCA; c) separated

noise via MCA; d) separated effective signal via MCA-FK; e) separated noise via MCA-FK;
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Fig.8 Demonstration of a trace in Fig.7. a) the 31th trace of Fig.7a); b) denoised effective signal via MCA;
c) separated noise via MCA; d) separated effective signal via MCA-FK; e) separated noise via MCA-FK;



3.2 Field data

To further demonstrate the performance of MCA-FK in practice, we choose the field VSP data (Fig.9a)
from eastern China. The field data is much more complex than the VSP model. The field VSP signal is
seriously disturbed by the coupling noise and random noise.

The noisy VSP data is processed via MCA and MCA-FK algorithms, respectively. In these processing,
the length of the processing window is 200. For the dictionary A, shown in Fig.9b of the effective signal, the
appropriate Ricker wavelet is selected by analyzing the spectrum of some traces undisturbed by the coupling
noise in the field VSP data. As shown in Fig.9c, the trace reconstructed (green) using the Ricker wavelet

dictionary is almost identical with the original signal(black).
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Fig.9 Demonstration of data reconstructed with dictionary AO. a) field data; b) dictionary AO;

¢) original trace undisturbed by coupling noise (black) and its reconstruction (green).

The spectrum analysis of each part of the coupling noise interference is carried out to determine the
frequency characteristics and number N of the coupling noise, and spliced into an over-complete dictionary
A, The row size of the dictionary A; is 200 and the column size is 200*N(Fig.10e). The separated effective
signal and the coupling noise via MCA are shown in Fig.10a and b, respectively. It can be clearly observed
that the part of the original signal covered by the coupling noise is missing, and the missing part appears in
the extracted coupling noise. Because the coupling noise presents a regular signal, and the FK transform has
a strong suppression effect on such signals, the VSP signal contained in the coupling noise can be extracted to
reconstruct the effective signal (Fig.10c) by the MCA-FK algorithm. At the same time, the coupled noise and
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random noise (Fig.10d) are more successfully suppressed. In addition, the field data also contains some similar

transverse waves left by VSP data preprocessing, which is not processed in this paper.
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Fig.10 Demonstration of denoised results for field data in Fig.9a. a) the separated VSP signal via MCA; b) the separated
noise via MCA,; c) the separated VSP signal by MCA-FK. d) the separated noise by MCA-FK; e) dictionary Al.

4. Conclusion

In this paper, the algorithm of DAS coupling noise suppression based on MCA and FK transform is
proposed. Firstly, through the different characteristics of effective signal and coupling noise, the high-
dimensional space dictionaries are constructed for effective signal and coupling noise, respectively.
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Secondly, the noisy VSP data can be separated into effective signal, coupling noise and random noise through
MCA algorithm which is competed by solving the objective function including L1 and L2 norm regularizations
with ADMM. Finally, FK transform is used to extract the residue effective signal in the separated coupling
noise. Synthetic and field data examples demonstrate that the proposed algorithm can successfully suppress

the coupling noise and random noise for the noisy VSP data.
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