[1] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68(6), 394-424.
[2] Lindenblatt R de CR, Martinez GL, Silva LE, Faria PS, Camisasca DR, Lourenço S de QC. Oral squamous cell carcinoma grading systems – analysis of the best survival predictor. J Oral Pathol Med 2012;41:34–9. doi:10.1111/j.1600-0714.2011.01068.x.
[3] Liu S-A, Wang C-C, Jiang R-S, Lee F-Y, Lin W-J, Lin J-C. Pathological features and their prognostic impacts on oral cavity cancer patients among different subsites – A singe institute’s experience in Taiwan. Sci Rep 2017;7. doi:10.1038/s41598-017-08022-w.
[4] Baxi SS, Pinheiro LC, Patil SM, Pfister DG, Oeffinger KC, Elkin EB. Causes of death in long-term survivors of head and neck cancer. Cancer 2014;120:1507–13. doi:10.1002/cncr.28588.
[5] Mendel JR, Baig SA, Hall MG, Jeong M, Byron MJ, Morgan JC, et al. Brand switching and toxic chemicals in cigarette smoke: A national study. PLoS One 2018;13:e0189928.
[6] Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1–40. doi:10.1016/j.cbi.2005.12.009.
[7] Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 2010;49:1603–16. doi:10.1016/j.freeradbiomed.2010.09.006.
[8] Curtis CD, Thorngren DL, Nardulli AM. Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues. BMC Cancer 2010;10:9. doi:10.1186/1471-2407-10-9.
[9] David SS, O’Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature 2007;447:941–50. doi:10.1038/nature05978.
[10] Shah F, Logsdon D, Messmann RA, Fehrenbacher JC, Fishel ML, Kelley MR. Exploiting the Ref-1-APE1 node in cancer signaling and other diseases: from bench to clinic. Npj Precis Oncol 2017;1:19. doi:10.1038/s41698-017-0023-0.
[11] Powis G, Kirkpatrick DL. Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol 2007;7:392–7. doi:10.1016/j.coph.2007.04.003.
[12] Cajaiba MM, Neves JI, Casarotti FF, de Camargo B, ChapChap P, Sredni ST, et al. Hepatoblastomas and Liver Development: A Study of Cytokeratin Immunoexpression in Twenty-Nine Hepatoblastomas. Pediatr Dev Pathol 2006;9:196–202. doi:10.2350/05-12-0002.1.
[13] Solé VA, Papillon E, Cotte M, Walter P, Susini J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B At Spectrosc 2007;62:63–8. doi:https://doi.org/10.1016/j.sab.2006.12.002.
[14] Pérez CA, Radtke M, Sánchez HJ, Tolentino H, Neuenshwander RT, Barg W, et al. Synchrotron radiation X-Ray fluorescence at the LNLS: beamline instrumentation and experiments. X-Ray Spectrom 1999;28:320–6. doi:10.1002/(SICI)1097-4539(199909/10)28:5<320::AID XRS359>3.0.CO;2-1.
[15] Soini Y, Kahlos K, Puhakka A, Lakari E, Säily M, Pääkkö P, et al. Expression of inducible nitric oxide synthase in healthy pleura and in malignant mesothelioma. Br J Cancer 2000;83:880–6. doi:10.1054/bjoc.2000.1384.
[16] Santos M dos, Mercante AM da C, Louro ID, Gonçalves AJ, Carvalho MB de, da Silva EHT, et al. HIF1-Alpha Expression Predicts Survival of Patients with Squamous Cell Carcinoma of the Oral Cavity. PLoS One 2012;7.
[17] Yanamoto S, Yamada S, Takahashi H, Yoshitomi I, Kawasaki G, Ikeda H, et al. Clinicopathological risk factors for local recurrence in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2012;41:1195–200. doi:10.1016/j.ijom.2012.07.011.
[18] Jardim JF, Francisco ALN, Gondak R, Damascena A, Kowalski LP. Prognostic impact of perineural invasion and lymphovascular invasion in advanced stage oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2015;44:23–8. doi:10.1016/j.ijom.2014.10.006.
[19] Jones HB, Sykes A, Bayman N, Sloan P, Swindell R, Patel M, et al. The impact of lymphovascular invasion on survival in oral carcinoma. Oral Oncol 2009;45:10–5. doi:10.1016/j.oraloncology.2008.03.009.
[20] Kim JM, Kim TY, Kim WB, Gong G, Kim SC, Hong SJ, et al. Lymphovascular invasion is associated with lateral cervical lymph node metastasis in papillary thyroid carcinoma. Laryngoscope 2006;116:2081–5.
[21] Close LG, Burns DK, Reisch J, Schaefer SD. Microvascular Invasion in Cancer of the Oral Cavity and Oropharynx. Arch Otolaryngol Neck Surg 1987;113:1191–5. doi:10.1001/archotol.1987.01860110057008.
[22] Michikawa C, Uzawa N, Kayamori K, Sonoda I, Ohyama Y, Okada N, et al. Clinical significance of lymphatic and blood vessel invasion in oral tongue squamous cell carcinomas. Oral Oncol 2012;48:320–4. doi:10.1016/j.oraloncology.2011.11.014.
[23] Matsushita Y, Yanamoto S, Takahashi H, Yamada S, Naruse T, Sakamoto Y, et al. A clinicopathological study of perineural invasion and vascular invasion in oral tongue squamous cell carcinoma. Int J Oral Maxillofac Surg 2015;44:543–8. doi:10.1016/j.ijom.2015.01.018.
[24] Garavello W, Spreafico R, Gaini RM. Oral tongue cancer in young patients: A matched analysis. Oral Oncol 2007;43:894–7. doi:10.1016/j.oraloncology.2006.10.013.
[25] Bonifazi, Martina, et al. "Age–period–cohort analysis of oral cancer mortality in Europe: The end of an epidemic?." Oral Oncology 47.5 (2011): 400-407.
[26] Li Y, Mao Y, Zhang Y, Cai S, Chen G, Ding Y, et al. Alcohol drinking and upper aerodigestive tract cancer mortality: A systematic review and meta-analysis. Oral Oncol 2014;50:269–75. doi:10.1016/j.oraloncology.2013.12.015.
[27] International Agency for Reseach on Cancer (IARC). Section 2.2. Cancer of the oral cavity and pharynx. In: IARC Working Group on the Evalutionof Carcinogenic Risks to Humans.Alcohol Consumption and Ethyl- carbamate. Lyon, France: IARC Press; 2010:237-329.
[28] Nelson DE, Jarman DW, Rehm J, Greenfield TK, Rey G, Kerr WC, et al. Alcohol-Attributable Cancer Deaths and Years of Potential Life Lost in the United States. Am J Public Health 2013;103:641–8. doi:10.2105/AJPH.2012.301199.
[29] Praud D, Rota M, Rehm J, Shield K, Zatoński W, Hashibe M, et al. Cancer incidence and mortality attributable to alcohol consumption. Int J Cancer 2016;138:1380–7. doi:10.1002/ijc.29890.
[30] South, Andrew P. et al. Mutation signature analysis identifies increased mutation caused by tobacco smoke associated DNA adducts in larynx squamous cell carcinoma compared with oral cavity and oropharynx. Scientific reports, v. 9, n. 1, p. 1-9, 2019.
[31] Boyle, Jay O., et al. "Effects of cigarette smoke on the human oral mucosal transcriptome." Cancer prevention research 3.3 (2010): 266-278.
[32] Lin, Wen-Jiun et al. Smoking, alcohol, and betel quid and oral cancer: a prospective cohort study. Journal of oncology, v. 2011, 2011.
[33] Archanjo, Anderson Barros et al. elemental characterization of oral cavity squamous cell carcinoma and its relationship with smoking, prognosis and survival. Scientific Reports, v. 10, n. 1, p. 1-10, 2020.
[34] Chen, Fa et al. Serum copper and zinc levels and the risk of oral cancer: A new insight based on large‐scale case–control study. Oral diseases, v. 25, n. 1, p. 80-86, 2019.
[35] Sachdev, Prageet K. et al. Zinc, copper, and iron in oral submucous fibrosis: A meta-analysis. International journal of dentistry, v. 2018, 2018.
[36] Khanna, Sunali et al. Trace elements (copper, zinc, selenium and molybdenum) as markers in oral sub mucous fibrosis and oral squamous cell carcinoma. Journal of Trace Elements in Medicine and Biology, v. 27, n. 4, p. 307-311, 2013.
[37] Shi X, Dalal NS. The role of superoxide radical in chromium(VI)-generated hydroxyl radical: The Cr(VI) haber-weiss cycle. Arch Biochem Biophys 1992;292:323–7. doi:10.1016/0003-9861(92)90085-B.
[38] Shi X, Dalal NS. Generation of hydroxyl radical by chromate in biologically relevant systems: role of Cr(V) complexes versus tetraperoxochromate(V). Environ Health Perspect 1994;102:231–6. doi:10.1289/ehp.94102s3231.
[39] Feng J, Xu J, Xu Y, Xiong J, Xiao T, Jiang C, et al. CLIC1 promotes the progression of oral squamous cell carcinoma via integrins/ERK pathways. Am J Transl Res 2019;11:557–71.
[40] Peretti M, Angelini M, Savalli N, Florio T, Yuspa SH, Mazzanti M. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets. Biochim Biophys Acta - Biomembr 2015;1848:2523–31. doi:10.1016/j.bbamem.2014.12.012.
[41] Yuzefovych L V, Kahn AG, Schuler MA, Eide L, Arora R, Wilson GL, et al. Mitochondrial DNA Repair through OGG1 Activity Attenuates Breast Cancer Progression and Metastasis. Cancer Res 2016;76:30–34. doi:10.1158/0008-5472.CAN-15-0692.
[42] Kakehashi A, Ishii N, Okuno T, Fujioka M, Gi M, Fukushima S, et al. Progression of hepatic adenoma to carcinoma in Ogg1 mutant mice induced by phenobarbital. Oxid Med Cell Longev 2017;2017:16 pages. doi:10.1155/2017/8541064.
[43] Tell G, Damante G, Caldwell D, Kelley MR. The Intracellular Localization of APE1/Ref-1: More than a Passive Phenomenon? Antioxid Redox Signal 2005;7:367–84. doi:10.1089/ars.2005.7.367.
[44] Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci 2016;148:183–93. doi:10.1016/j.lfs.2016.02.002.
[45] Benhar M, Engelberg D, Levitzki A. ROS, stress‐activated kinases and stress signaling in cancer. EMBO Rep 2002;3:420–5. doi:10.1093/embo-reports/kvf094.
[46] Kelley MR, Logsdon D, Fishel ML. Targeting DNA repair pathways for cancer treatment: what’s new? Futur Oncol 2014;10:1215–37. doi:10.2217/fon.14.60.
[47] Hornsveld M, Dansen TB. The Hallmarks of Cancer from a Redox Perspective. Antioxid Redox Signal 2016;25:300–25. doi:10.1089/ars.2015.6580.
[48] Welsh SJ, Bellamy WT, Briehl MM, Powis G. The Redox Protein Thioredoxin-1 (Trx-1) Increases Hypoxia-inducible Factor 1α Protein Expression. Cancer Res 2002;62:5089–5095.
[49] Kim WJ, Cho H, Lee S-W, Kim Y-J, Kim K-W. Antisense-thioredoxin inhibits angiogenesis via pVHL-mediated hypoxia-inducible factor-1α degradation. Int J Oncol 2005;26:1049–52.
[50] Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal‐regulating kinase (ASK) 1. EMBO J 1998;17:2596–2606. doi:10.1093/emboj/17.9.2596.