[1] Data obtained from https://covid19.who.int/ (World Health Organization)
[2] Fehr, A.R., Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015, 1282, 1-23.
[3] Yang, P., Wang, X. COVID-19: a new challenge for human beings. Cell Mol Immunol. 2020, 17, 555-7.
[4] Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020, 579, 265-9.
[5] Chen, Y.W., Yiu, C.B., Wong, K.Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL (pro)) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Res. 2020, 9, 129.
[6] Khan, S.A., Zia, K., Ashraf, S., Uddin, R., Ul-Haq, Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J Biomol Struct Dyn. 2020, 1-10.
[7] Gahlawat, A., Kumar, N., Kumar, R., Sandhu, H., Singh, I.P., Singh, S., et al. Structure-Based Virtual Screening to Discover Potential Lead Molecules for the SARS-CoV-2 Main Protease. J Chem Inf Model. 2020.
[8] Schoeman, D., Fielding, B.C. Coronavirus envelope protein: current knowledge. Virol J. 2019, 16, 69.
[9] Ravichandran, S., Coyle, E.M., Klenow, L., Tang, J., Grubbs, G., Liu, S., et al. Antibody signature induced by SARS-CoV-2 spike protein immunogens in rabbits. Sci Transl Med. 2020, 12.
[10] Unni, S., Aouti, S., Thiyagarajan, S., Padmanabhan, B. Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods. J Biosci. 2020, 45.
[11] Chikhale, R.V., Gurav, S.S., Patil, R.B., Sinha, S.K., Prasad, S.K., Shakya, A., et al. Sars-cov-2 host entry and replication inhibitors from Indian ginseng: an in-silico approach. J Biomol Struct Dyn. 2020, 1-12.
[12] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., et al. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235-42.
[13] Visualizer, A.D.S. Version 4.5. Softw. Vis. Anal. Protein Struct. 2017.
[14] Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009, 30, 2785-91.
[15] Bolton, E.E., Wang, Y., Thiessen, P.A., Bryant, S.H. PubChem: integrated platform of small molecules and biological activities. In: Annual reports in computational chemistry, Elsevier, 2008, Vol. 4, pp. 217-41.
[16] Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012, 4, 17.
[17] Dallakyan, S., Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015, 1263, 243-50.
[18] Laskowski, R.A., Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011, 51, 2778-86.
[19] Berendsen, H.J., van der Spoel, D., van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Computer physics communications. 1995, 91, 43-56.
[20] Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010, 78, 1950-8.
[21] Schrödinger, L. PyMOL. The PyMOL Molecular Graphics System, Version. 2017, 2.
[22] Yoshida, M., Hishiyama, T., Igarashi, T. A novel method for determining total vitamin B1 in processed food enriched with dibenzoyl thiamine. Journal of the Japanese Society for Food Science and Technology (Japan). 2008.
[23] Heywood, R., Wood, J., Majeed, S. Tumorigenic and toxic effect of O, S-dibenzoyl thiamine hydrochloride in prolonged dietary administration to rats. Toxicology letters. 1985, 26, 53-8.
[24] Bae, S., Kamynina, E., Farinola, A.F., Caudill, M.A., Stover, P.J., Cassano, P.A., et al. Provision of folic acid for reducing arsenic toxicity in arsenic‐exposed children and adults. The Cochrane Database of Systematic Reviews. 2017, 2017.
[25] Authority, E.F.S. Benfotiamine, thiamine monophosphate chloride and thiamine pyrophosphate chloride, as sources of vitamin B1 added for nutritional purposes to food supplements‐Scientific Opinion of the Panel on Food Additives and Nutrient Sources added to Food (ANS). EFSA Journal. 2008, 6, 864.
[26] Corrêa, R.C., Barros, L., Fernandes, Â., Sokovic, M., Bracht, A., Peralta, R.M., et al. A natural food ingredient based on ergosterol: optimization of the extraction from Agaricus blazei, evaluation of bioactive properties and incorporation in yogurts. Food & function. 2018, 9, 1465-74.
[27] Satake, K., Amano, T., Okamoto, T. Calcipotriol and betamethasone dipropionate synergistically enhances the balance between regulatory and proinflammatory T cells in a murine psoriasis model. Scientific reports. 2019, 9, 1-11.
[28] Ben-Eltriki, M., Deb, S., Guns, E.S.T. Calcitriol in combination therapy for prostate cancer: pharmacokinetic and pharmacodynamic interactions. Journal of Cancer. 2016, 7, 391.
[29] Vogel, T., Dali‐Youcef, N., Kaltenbach, G., Andres, E. Homocysteine, vitamin B12, folate and cognitive functions: a systematic and critical review of the literature. International journal of clinical practice. 2009, 63, 1061-7.
[30] Naqvi, A.A.T., Fatima, K., Mohammad, T., Fatima, U., Singh, I.K., Singh, A., et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2020, 165878.