[1] F. Gralla, D. J. Abson, A. P. Møller, D. J. Lang, and H. Von Wehrden, “Energy transitions and national development indicators : A global review of nuclear energy production,” Renew. Sustain. Energy Rev., no. September 2015, pp. 0–1, 2016.
[2] N. S. Caetano, T. M. Mata, A. A. Martins, and M. C. Felgueiras, “New Trends in Energy Production and Utilization,” Energy Procedia, vol. 107, no. September 2016, pp. 7–14, 2017.
[3] S. Sivaramanan, “Acid Rain , Causes , Effects and Contol Strategies,” Cent. Environ. Auth., vol. 2012, no. April, pp. 1–13, 2015.
[4] M. M. Ra and S. Rehman, “National energy scenario of Pakistan – Current status , future alternatives , and institutional infrastructure : An overview,” vol. 69, no. October 2016, p. 2017, 2017.
[5] S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renew. Sustain. Energy Rev., vol. 57, pp. 850–866, 2016.
[6] “Renewable Energy in Urban Areas : Worldwide,” pp. 1–19, 2018.
[7] R. York and S. Elizabeth, “Energy Research & Social Science Energy transitions or additions ? Why a transition from fossil fuels requires more than the growth of renewable energy,” Energy Res. Soc. Sci., vol. 51, no. January, pp. 40–43, 2019.
[8] A. Foley and A. G. Olabi, “Renewable energy technology developments, trends and policy implications that can underpin the drive for global climate change,” Renew. Sustain. Energy Rev., vol. 68, pp. 1112–1114, 2017.
[9] “Bioenergy – a Sustainable,” no. April, pp. 0–108, 2016.
[10] U.S. EIA, “Annual Energy Outlook 2019 with projections to 2050,” Annu. Energy Outlook 2019 with Proj. to 2050, vol. 44, no. 8, pp. 1–64, 2019.
[11] “Polluted Water Borne Diseases : Symptoms , Causes , Treatment and Prevention Polluted Water Borne Diseases : Symptoms , Causes , Treatment and Prevention,” no. December 2018, 2019.
[12] Q. Wang and Z. Yang, “Industrial water pollution, water environment treatment, and health risks in China,” Environ. Pollut., vol. 218, pp. 358–365, 2016.
[13] L. Ren, Y. Ahn, and B. E. Logan, “A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment,” Environ. Sci. Technol., vol. 48, no. 7, pp. 4199–4206, 2014.
[14] C. Santoro, C. Arbizzani, B. Erable, and I. Ieropoulos, “Microbial fuel cells: From fundamentals to applications. A review,” J. Power Sources, vol. 356, pp. 225–244, 2017.
[15] P. Rajasulochana and V. Preethy, “Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review,” Resour. Technol., vol. 2, no. 4, pp. 175–184, 2016.
[16] M. C. Potter, “Electrical Effects Accompanying the Decomposition of Organic Compounds,” Proc. R. Soc. B Biol. Sci., vol. 84, no. 571, pp. 260–276, 1911.
[17] D. Nicolas, D. Nicolas, P. Management, F. Cells, and E. Centrale, “Power Management for Microbial Fuel Cells To cite this version : HAL Id : tel-01064521,” 2014.
[18] M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, and S. E. Oh, “Microbial fuel cell as new technol ogy for bioelectricity generation: A review,” Alexandria Eng. J., vol. 54, no. 3, pp. 745–756, 2015.
[19] A. G. Stern, “A new sustainable hydrogen clean energy paradigm,” Int. J. Hydrogen Energy, vol. 43, no. 9, pp. 4244–4255, 2018.
[20] Z. Du, H. Li, and T. Gu, “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy,” Biotechnol. Adv., vol. 25, no. 5, pp. 464–482, 2007.
[21] A. Azimi, A. Azari, M. Rezakazemi, and M. Ansarpour, “Removal of Heavy Metals from Industrial Wastewaters: A Review,” ChemBioEng Rev., vol. 4, no. 1, pp. 37–59, 2017.
[22] D. Pant, G. Van Bogaert, L. Diels, and K. Vanbroekhoven, “Bioresource Technology A review of the substrates used in microbial fuel cells ( MFCs ) for sustainable energy production,” Bioresour. Technol., vol. 101, no. 6, pp. 1533–1543, 2010.
[23] P. Pandey, V. N. Shinde, R. L. Deopurkar, S. P. Kale, S. A. Patil, and D. Pant, “Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery,” Appl. Energy, vol. 168, pp. 706–723, 2016.
[24] H. T. Vu and B. Min, “ScienceDirect Integration of submersible microbial fuel cell in anaerobic digestion for enhanced production of methane and current at varying glucose levels,” Int. J. Hydrogen Energy, no. xxxx, pp. 1–9, 2019.
[25] V. G. Gude, “Wastewater treatment in microbial fuel cells - An overview,” J. Clean. Prod., vol. 122, pp. 287–307, 2016.
[26] Z. Wang, X. Mei, J. Ma, and Z. Wu, “Recent Advances in Microbial Fuel Cells Integrated with Sludge Treatment,” Chem. Eng. Technol., vol. 35, no. 10, pp. 1733–1743, 2012.
[27] A. Deval and A. K. Dikshit, “Construction, Working and Standardization of Microbial Fuel Cell,” APCBEE Procedia, vol. 5, pp. 59–63, 2013.
[28] B. H. Kim, I. S. Chang, and G. M. Gadd, “Challenges in microbial fuel cell development and operation,” Appl. Microbiol. Biotechnol., vol. 76, no. 3, pp. 485–494, 2007.
[29] A. J. Slate, K. A. Whitehead, D. A. C. Brownson, and C. E. Banks, “Microbial fuel cells: An overview of current technology,” Renew. Sustain. Energy Rev., vol. 101, no. September 2018, pp. 60–81, 2019.
[30] M. Aghababaie, M. Farhadian, A. Jeihanipour, and D. Biria, “Effective factors on the performance of microbial fuel cells in wastewater treatment – a review,” vol. 2515, no. September, 2015.
[31] L. He et al., “Advances in microbial fuel cells for wastewater treatment,” Renew. Sustain. Energy Rev., vol. 71, no. December 2016, pp. 388–403, 2017.
[32] L. Hao, B. Zhang, M. Cheng, and C. Feng, “Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells,” Bioresour. Technol., vol. 201, pp. 105–110, 2016.
[33] H. Liu, R. Ramnarayanan, and B. E. Logan, “Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell,” Environ. Sci. Technol., vol. 38, no. 7, pp. 2281–2285, 2004.
[34] W. W. Li, G. P. Sheng, X. W. Liu, and H. Q. Yu, “Recent advances in the separators for microbial fuel cells,” Bioresour. Technol., vol. 102, no. 1, pp. 244–252, 2011.
[35] B. Min, S. Cheng, and B. E. Logan, “Electricity generation using membrane and salt bridge microbial fuel cells,” Water Res., vol. 39, no. 9, pp. 1675–1686, 2005.
[36] A. P. Luna, F. K. B. Manalo, and E. A. Florido, “Design and implementation of microbial fuel cell using carbon paste electrode,” Key Eng. Mater., vol. 775 KEM, pp. 350–355, 2018.
[37] M. Miskan, M. Ismail, and M. Ghasemi, “ScienceDirect Characterization of membrane biofouling and its effect on the performance of microbial fuel cell,” Int. J. Hydrogen Energy, pp. 1–10, 2015.
[38] G. G. Kumar, V. G. S. Sarathi, and K. S. Nahm, “Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells,” Biosens. Bioelectron., vol. 43, no. 1, pp. 461–475, 2013.
[39] M. Rosenbaum, F. Aulenta, M. Villano, and L. T. Angenent, “Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?,” Bioresour. Technol., vol. 102, no. 1, pp. 324–333, 2011.
[40] K. C. Wrighton et al., “Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell ᰔ †,” vol. 77, no. 21, pp. 7633–7639, 2011.
[41] C. W. Lin, C. H. Wu, Y. H. Chiu, and S. L. Tsai, “Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell,” Fuel, vol. 125, pp. 30–35, 2014.
[42] Y. A. Gorby et al., “Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms,” Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 30, pp. 11358–11363, 2006.
[43] F. Zhang, S. Cheng, D. Pant, G. Van Bogaert, and B. E. Logan, “Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell,” Electrochem. commun., vol. 11, no. 11, pp. 2177–2179, 2009.
[44] S. Cheng and B. E. Logan, “Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells,” Electrochem. commun., vol. 9, no. 3, pp. 492–496, 2007.
[45] S. J. You, N. Q. Ren, Q. L. Zhao, J. Y. Wang, and F. L. Yang, “Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material,” Fuel Cells, vol. 9, no. 5, pp. 588–596, 2009.
[46] G. Lepage, F. O. Albernaz, G. Perrier, and G. Merlin, “Characterization of a microbial fuel cell with reticulated carbon foam electrodes,” Bioresour. Technol., vol. 124, pp. 199–207, 2012.
[47] A. A. Yazdi, L. D’Angelo, N. Omer, G. Windiasti, X. Lu, and J. Xu, “Carbon nanotube modification of microbial fuel cell electrodes,” Biosens. Bioelectron., vol. 85, pp. 536–552, 2016.
[48] T. P. Call et al., “Platinum-free, graphene based anodes and air cathodes for single chamber microbial fuel cells,” J. Mater. Chem. A, vol. 5, no. 45, pp. 23872–23886, 2017.
[49] B. Erable, N. Byrne, L. Etcheverry, W. Achouak, and A. Bergel, “Single medium microbial fuel cell: Stainless steel and graphite electrode materials select bacterial communities resulting in opposite electrocatalytic activities,” Int. J. Hydrogen Energy, vol. 42, no. 41, pp. 26059–26067, 2017.
[50] Q. Chen et al., Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells. Elsevier Ltd, 2017.
[51] Q. Du, J. An, J. Li, L. Zhou, N. Li, and X. Wang, “Polydopamine as a new modi fi cation material to accelerate startup and promote anode performance in microbial fuel cells,” J. Power Sources, vol. 343, pp. 477–482, 2017.
[52] Y. Zhang, J. Sun, Y. Hu, S. Li, and Q. Xu, “Bio-cathode materials evaluation in microbial fuel cells : A comparison of graphite felt , carbon paper and stainless steel mesh materials,” Int. J. Hydrogen Energy, vol. 37, no. 22, pp. 16935–16942, 2012.
[53] S. F. N. Rusli, M. H. Abu Bakar, K. S. Loh, and M. S. Mastar, “Review of high-performance biocathode using stainless steel and carbon-based materials in Microbial Fuel Cell for electricity and water treatment,” Int. J. Hydrogen Energy, no. xxxx, 2018.
[54] Y. Yin et al., “Increased electroactive species concentration in anodic biofilm of Geobacter-inoculated microbial fuel cells under static magnetic field,” Res. Chem. Intermed., vol. 43, no. 2, pp. 873–883, 2017.
[55] F. Zhao, R. C. T. Slade, and J. R. Varcoe, “Techniques for the study and development of microbial fuel cells: An electrochemical perspective,” Chem. Soc. Rev., vol. 38, no. 7, pp. 1926–1939, 2009.
[56] B. Hou, Y. Y. Hu, J. Sun, and Y. Q. Cao, “Effect of anodic biofilm growth on the performance of the microbial fuel cell (MFC),” 2010 4th Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2010, no. 20977032, pp. 1–4, 2010.
[57] J. L. Varanasi, R. Veerubhotla, and D. Das, “Diagnostic tools for the assessment of MFC,” Microb. Fuel Cell A Bioelectrochemical Syst. that Convert. Waste to Watts, pp. 249–268, 2017.
[58] Z. He and F. Mansfeld, “Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies,” Energy Environ. Sci., vol. 2, no. 2, pp. 215–219, 2009.
[59] M. Sindhuja, N. S. Kumar, V. Sudha, and S. Harinipriya, “Equivalent circuit modeling of microbial fuel cells using impedance spectroscopy,” J. Energy Storage, vol. 7, pp. 136–146, 2016.
[60] U. Schröder, “Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency,” Phys. Chem. Chem. Phys., vol. 9, no. 21, pp. 2619–2629, 2007.
[61] F. Harnisch and U. Schröder, “From MFC to MXC: Chemical and biological cathodes and their potential for microbial bioelectrochemical systems,” Chem. Soc. Rev., vol. 39, no. 11, pp. 4433–4448, 2010.
[62] J. Sun, W. Li, Y. Li, Y. Hu, and Y. Zhang, “Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell,” Bioresour. Technol., vol. 142, pp. 407–414, 2013.
[63] G. C. Gil et al., “Operational parameters affecting the performance of a mediator-less microbial fuel cell,” Biosens. Bioelectron., vol. 18, no. 4, pp. 327–334, 2003.
[64] M. Di Lorenzo, Use of Microbial Fuel Cells in Sensors. Elsevier Ltd., 2015.
[65] A. Almatouq and A. O. Babatunde, “Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells : Mechanisms and Influencing Factors,” 2016.
[66] Y. Yuan, J. Ahmed, L. Zhou, B. Zhao, and S. Kim, “Biosensors and Bioelectronics Carbon nanoparticles-assisted mediator-less microbial fuel cells using Proteus vulgaris,” Biosens. Bioelectron., vol. 27, no. 1, pp. 106–112, 2011.
[67] H. Moon, I. S. Chang, and B. H. Kim, “Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell,” vol. 97, pp. 621–627, 2006.
[68] M. Daghio, I. Gandolfi, G. Bestetti, A. Franzetti, E. Guerrini, and P. Cristiani, “Anodic and cathodic microbial communities in single chamber microbial fuel cells,” N. Biotechnol., vol. 00, no. 00, pp. 1–6, 2014.
[69] B. R. Ringeisen et al., “High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10,” Environ. Sci. Technol., vol. 40, no. 8, pp. 2629–2634, 2006.
[70] H. Yazdi, L. Alzate-Gaviria, and Z. J. Ren, “Pluggable microbial fuel cell stacks for septic wastewater treatment and electricity production,” Bioresour. Technol., vol. 180, pp. 258–263, 2015.
[71] V. M. Ortiz-Martínez, M. J. Salar-García, A. P. de los Ríos, F. J. Hernández-Fernández, J. A. Egea, and L. J. Lozano, “Developments in microbial fuel cell modeling,” Chem. Eng. J., vol. 271, pp. 50–60, 2015.
[72] M. Li et al., “Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity,” Biotechnol. Adv., vol. 36, no. 4, pp. 1316–1327, 2018.
[73] J. Y. Nam, H. W. Kim, K. H. Lim, H. S. Shin, and B. E. Logan, “Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells,” Biosens. Bioelectron., vol. 25, no. 5, pp. 1155–1159, 2010.
[74] N. F. Ghazali, N. A. B. N. Mahmood, K. A. Ibrahim, S. A. F. S. Muhammad, and N. S. Amalina, “Electricity generation from palm oil tree empty fruit bunch (EFB) using dual chamber microbial fuel cell (MFC),” IOP Conf. Ser. Mater. Sci. Eng., vol. 206, no. 1, 2017.
[75] Y. Ahn and B. E. Logan, “Saline catholytes as alternatives to phosphate buffers in microbial fuel cells,” Bioresour. Technol., vol. 132, pp. 436–439, 2013.
[76] L. E. D. Smith and G. Siciliano, “A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture,” Agric. Ecosyst. Environ., vol. 209, pp. 15–25, 2015.
[77] J. Shen et al., “Effect of ultrasonic pretreatment of the dairy manure on the electricity generation of microbial fuel cell,” Biochem. Eng. J., vol. 129, pp. 44–49, 2018.
[78] Medicado AB, “Phosphate Buffered Saline (PBS), pH 7.4 and 7.2 - Product description,” pp. 18–19, 2008.
[79] S. Rajeswari et al., “bbb..Utilization of soak liquor in microbial fuel cell,” Fuel, vol. 181, no. 181, pp. 148–156, Oct. 2016.
[80] B. Logan, H. Liu, S.-E. Oh, and B. Min, “Electricity From Domestic Wastewater Can Be Harvested in Microbial Fuel Cells,” Proc. Water Environ. Fed., vol. 2004, no. 15, pp. 581–585, 2012.
[81] M. M. Ghangrekar and V. B. Shinde, “Simultaneous sewage treatment and electricity generation in membrane-less microbial fuel cell,” Water Sci. Technol., vol. 58, no. 1, pp. 37–43, 2008.
[82] N. Samsudeen, T. K. Radhakrishnan, and M. Matheswaran, “Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater,” Bioresour. Technol., vol. 195, pp. 242–247, 2015.
[83] Q. Wen, Y. Wu, L. Zhao, and Q. Sun, “Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell,” Fuel, vol. 89, no. 7, pp. 1381–1385, 2010.
[84] A. Tremouli, G. Antonopoulou, S. Bebelis, and G. Lyberatos, “Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads,” Bioresour. Technol., vol. 131, pp. 380–389, 2013.
[85] M. Sindhuja, V. Sudha, and S. Harinipriya, “Insights on the resistance, capacitance and bioelectricity generation of microbial fuel cells by electrochemical impedance studies,” Int. J. Hydrogen Energy, vol. 44, no. 11, pp. 5428–5436, 2019.
[86] P. P. Włodarczyk and B. Włodarczyk, “Wastewater Treatment and Electricity Production in a Microbial Fuel Cell with Cu–B Alloy as the Cathode Catalyst,” Catalysts, vol. 9, no. 7, p. 572, 2019.
[87] M. Sindhuja, S. Harinipriya, A. C. Bala, and A. K. Ray, “Environmentally available biowastes as substrate in microbial fuel cell for efficient chromium reduction,” J. Hazard. Mater., vol. 355, no. May, pp. 197–205, 2018.